1. Hwang SO, Cha KC, Kim K, Jo YH, Chung SP, You JS, Shin J, Lee HJ, Park YS, Kim S, et al. A randomized controlled trial of compression rates during cardiopulmonary resuscitation. J Korean Med Sci. 2016; 31:1491–1498.
2. Sayre MR, Koster RW, Botha M, Cave DM, Cudnik MT, Handley AJ, Hatanaka T, Hazinski MF, Jacobs I, Monsieurs K, et al. Part 5: Adult basic life support: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Circulation. 2010; 122:S298–S324.
3. Idris AH, Guffey D, Pepe PE, Brown SP, Brooks SC, Callaway CW, Christenson J, Davis DP, Daya MR, Gray R, et al. Chest compression rates and survival following out-of-hospital cardiac arrest. Crit Care Med. 2015; 43:840–848.
4. Halperin HR, Paradis N, Ornato JP, Zviman M, Lacorte J, Lardo A, Kern KB. Cardiopulmonary resuscitation with a novel chest compression device in a porcine model of cardiac arrest: improved hemodynamics and mechanisms. J Am Coll Cardiol. 2004; 44:2214–2220.
5. Hwang SO, Lee KH, Cho JH, Yoon J, Choe KH. Changes of aortic dimensions as evidence of cardiac pump mechanism during cardiopulmonary resuscitation in humans. Resuscitation. 2001; 50:87–93.
6. Halperin HR, Tsitlik JE, Guerci AD, Mellits ED, Levin HR, Shi AY, Chandra N, Weisfeldt ML. Determinants of blood flow to vital organs during cardiopulmonary resuscitation in dogs. Circulation. 1986; 73:539–550.
7. Sunde K, Wik L, Naess PA, Ilebekk A, Nicolaysen G, Steen PA. Effect of different compression--decompression cycles on haemodynamics during ACD-CPR in pigs. Resuscitation. 1998; 36:123–131.