1. Shearer AE, Hildebrand MS, Smith RJH. Hereditary hearing loss and deafness overview. In : Adam MP, Ardinger HH, Pagon RA, editors. GeneReviews [Internet]. Seattle, WA: 1993. Updated on July 2017.
https://www.ncbi.nlm.nih.gov/books/NBK1434/.
2. Blaydon DC, Mueller RF, Hutchin TP, Leroy BP, Bhattacharya SS, Bird AC, et al. The contribution of
USH1C mutations to syndromic and non-syndromic deafness in the UK. Clin Genet. 2003; 63:303–307. PMID:
12702164.
3. Ahmed ZM, Smith TN, Riazuddin S, Makishima T, Ghosh M, Bokhari S, et al. Nonsyndromic recessive deafness
DFNB18 and Usher syndrome type IC are allelic mutations of
USHIC. Hum Genet. 2002; 110:527–531. PMID:
12107438.
4. Ouyang XM, Xia XJ, Verpy E, Du LL, Pandya A, Petit C, et al. Mutations in the alternatively spliced exons of
USH1C cause non-syndromic recessive deafness. Hum Genet. 2002; 111:26–30. PMID:
12136232.
5. Khateb S, Zelinger L, Ben-Yosef T, Merin S, Crystal-Shalit O, Gross M, et al. Exome sequencing identifies a founder frameshift mutation in an alternative exon of
USH1C as the cause of autosomal recessive retinitis pigmentosa with late-onset hearing loss. PLoS One. 2012; 7:e51566. PMID:
23251578.
6. Saihan Z, Stabej Ple Q, Robson AG, Rangesh N, Holder GE, Moore AT, et al. Mutations in the
USH1C gene associated with sector retinitis pigmentosa and hearing loss. Retina. 2011; 31:1708–1716. PMID:
21487335.
7. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015; 17:405–424. PMID:
25741868.
8. 1000 Genomes Project Consortium. Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015; 526:68–74. PMID:
26432245.
9. Bahloul A, Pepermans E, Raynal B, Wolff N, Cordier F, England P, et al. Conformational switch of harmonin, a submembrane scaffold protein of the hair cell mechanoelectrical transduction machinery. FEBS Lett. 2017; 591:2299–2310. PMID:
28653419.
10. Kamat V, Rafique A. Designing binding kinetic assay on the bio-layer interferometry (BLI) biosensor to characterize antibody-antigen interactions. Anal Biochem. 2017; 536:16–31. PMID:
28802648.
11. Ahmed ZM, Frolenkov GI, Riazuddin S. Usher proteins in inner ear structure and function. Physiol Genomics. 2013; 45:987–989. PMID:
24022220.
12. Wu L, Pan L, Zhang C, Zhang M. Large protein assemblies formed by multivalent interactions between cadherin23 and harmonin suggest a stable anchorage structure at the tip link of stereocilia. J Biol Chem. 2012; 287:33460–33471. PMID:
22879593.
13. Cosgrove D, Zallocchi M. Usher protein functions in hair cells and photoreceptors. Int J Biochem Cell Biol. 2014; 46:80–89. PMID:
24239741.
14. Reiners J, Wolfrum U. Molecular analysis of the supramolecular usher protein complex in the retina. Harmonin as the key protein of the Usher syndrome. Adv Exp Med Biol. 2006; 572:349–353. PMID:
17249595.
15. Kalyoncu S, Keskin O, Gursoy A. Interaction prediction and classification of PDZ domains. BMC Bioinformatics. 2010; 11:357. PMID:
20591147.
16. Siemens J, Kazmierczak P, Reynolds A, Sticker M, Littlewood-Evans A, Müller U. The Usher syndrome proteins cadherin 23 and harmonin form a complex by means of PDZ-domain interactions. Proc Natl Acad Sci U S A. 2002; 99:14946–14951. PMID:
12407180.
17. Lee HJ, Zheng JJ. PDZ domains and their binding partners: structure, specificity, and modification. Cell Commun Signal. 2010; 8:8. PMID:
20509869.