1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019.CA Cancer J Clin. 2019; 69:7–34.
2. National Lung Screening Trial Research Team. Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening.N Engl J Med. 2011; 365:395–409.
3. Nishi S, Zhou J, Kuo YF, Goodwin JS. Use of lung cancer screening with low-dose computed tomography in the medicare population.Mayo Clin Proc Innov Qual Outcomes. 2019; 3:70–77.
4. Lee JG, Jun S, Cho YW, Lee H, Kim GB, Seo JB, et al. Deep learning in medical imaging: general overview. Korean J Radiol. 2017; 18:570–584.
Article
5. National Lung Screening Trial Research Team. Church TR, Black WC, Aberle DR, Berg CD, Clingan KL, et al. Results of initial low-dose computed tomographic screening for lung cancer.N Engl J Med. 2013; 368:1980–1991.
6. Liang M, Tang W, Xu DM, Jirapatnakul AC, Reeves AP, Henschke CI, et al. Low-dose CT screening for lung cancer: computer-aided detection of missed lung cancers.Radiology. 2016; 281:279–288.
7. Zhao Y, De Bock GH, Vliegenthart R, Van Klaveren RJ, Wang Y, Bogoni L, et al. Performance of computer-aided detection of pulmonary nodules in low-dose CT: comparison with double reading by nodule volume. Eur Radiol. 2012; 22:2076–2084.
Article
8. Henschke CI, Yip R, Yankelevitz DF, Smith JP; International Early Lung Cancer Action Program Investigators. Definition of a positive test result in computed tomography screening for lung cancer: a cohort study.Ann Intern Med. 2013; 158:246–252.
9. Lo SB, Freedman MT, Gillis LB, White CS, Mun SK. Journal club: computer-aided detection of lung nodules on CT with a computerized pulmonary vessel suppressed function. AJR Am J Roentgenol. 2018; 210:480–488.
10. Armato SG 3rd, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, et al. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): a completed reference database of lung nodules on CT scans.Med Phys. 2011; 38:915–931.
11. Hua KL, Hsu CH, Hidayati SC, Cheng WH, Chen YJ. Computer-aided classification of lung nodules on computed tomography images via deep learning technique. Onco Targets Ther. 2015; 8:2015–2022.
12. Setio AA, Ciompi F, Litjens G, Gerke P, Jacobs C, Van Riel SJ, et al. Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks.IEEE Trans Med Imag/iing. 2016; 35:1160–1169.
13. Jacobs C, Van Rikxoort EM, Murphy K, Prokop M, Schaefer-Prokop CM, Van Ginneken B. Computer-aided detection of pulmonary nodules: a comparative study using the public LIDC/IDRI database.Eur Radiol. 2016; 26:2139–2147.
14. Henschke CI, Yankelevitz DF, Mirtcheva R, McGuinness G, McCauley D, Miettinen OS, et al. CT screening for lung cancer: frequency and significance of part-solid and nonsolid nodules.AJR Am J Roentgenol. 2002; 178:1053–1057.
15. Li F, Sone S, Abe H, Macmahon H, Doi K. Malignant versus benign nodules at CT screening for lung cancer: comparison of thin-section CT findings. Rad/iiology. 2004; 233:793–798.
Article
16. Nakata M, Saeki H, Takata I, Segawa Y, Mogami H, Mandai K, et al. Focal groundglass opacity detected by low-dose helical CT.Chest. 2002; 121:1464–1467.
17. Benzakoun J, Bommart S, Coste J, Chassagnon G, Lederlin M, Boussouar S, et al. Computer-aided diagnosis.
18. Silva M, Schaefer-Prokop CM, Jacobs C, Capretti G, Ciompi F, Van Ginneken B, et al. Detection of subsolid nodules in lung cancer screening: complementary sensitivity of visual reading and computer-aided diagnosis. Invest Radiol. 2018; 53:441–449.
19. Li L, Liu Z, Huang H, Lin M, Luo D. Evaluating the performance of a deep learning-based computer-aided diagnosis (DL-CAD) system for detecting and characterizing lung nodules: comparison with the performance.
20. Al Mohammad B, Brennan PC, Mello-Thoms C. A review of lung cancer screening and the role of computer-aided detection. Clin Radiol. 2017; 72:433–442.
Article
21. Van Riel SJ, Sánchez CI, Bankier AA, Naidich DP, Verschakelen J, Scholten ET, et al. Observer variability for classification of pulmonary nodules on low-dose CT images and its effect on nodule management.Radiology. 2015; 277:863–871.
22. Ciompi F, Chung K, Van Riel SJ, Setio AAA, Gerke PK, Jacobs C, et al. Towards automatic pulmonary nodule management in lung cancer screening with deep learning.Sci Rep. 2017; 7:46479.
23. Brown M, Browning P, Wahi-Anwar MW, Murphy M, Delgado J, Greenspan H, et al. Integration of chest CT CAD into the clinical workflow and impact on radiologist efficiency.Acad Radiol. 2019; 26:626–631.
24. Ronneberger O, Fischer P, Brox T.U-Net: convolutional networks for biomedical image segmentation. In Navab N, Hornegger J, Wells W, Frangi A, eds.Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science, vol 9351. Cham:. Springer;2006. p. 234–241.
25. Huang P, Park S, Yan R, Lee J, Chu LC, Lin CT, et al. Added value of computer-aided CT image features for early lung cancer diagnosis with small pulmonary nodules: a matched case-control study.Radiology. 2018; 286:286–295.
26. Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med. 2019; 25:954–961.
Article
27. McWilliams A, Tammemagi MC, Mayo JR, Roberts H, Liu G, Soghrati K, et al. Probability of cancer in pulmonary nodules detected on first screening CT.N Engl J Med. 2013; 369:910–919.
28. White CS, Dharaiya E, Dalal S, Chen R, Haramati LB. Vancouver risk calculator compared with ACR lung-RADS in predicting malignancy: analysis of the national lung screening trial.Radiology. 2019; 291:205–211.
29. Maldonado F, Duan F, Raghunath SM, Rajagopalan S, Karwoski RA, Garg K, et al. Noninvasive computed tomography-based risk stratification of lung adenocarcinomas in the national lung screening trial.Am J Respir Crit Care Med. 2015; 192:737–744.