J Korean Neurosurg Soc.  2019 May;62(3):265-271. 10.3340/jkns.2019.0098.

Normal and Disordered Formation of the Cerebral Cortex : Normal Embryology, Related Molecules, Types of Migration, Migration Disorders

Affiliations
  • 1Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea. ddang1@snu.ac.kr
  • 2Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul, Korea.

Abstract

The expansion and folding of the cerebral cortex occur during brain development and are critical factors that influence cognitive ability and sensorimotor skills. The disruption of cortical growth and folding may cause neurological disorders, resulting in severe intellectual disability and intractable epilepsy in humans. Therefore, understanding the mechanism that regulates cortical growth and folding will be crucial in deciphering the key steps of brain development and finding new therapeutic targets for the congenital anomalies of the cerebral cortex. This review will start with a brief introduction describing the anatomy of the brain cortex, followed by a description of our understanding of the proliferation, differentiation, and migration of neural progenitors and important genes and molecules that are involved in these processes. Finally, various types of disorders that develop due to malformation of the cerebral cortex will be discussed.

Keyword

Cerebral cortex; Embryology; Malformations of cortical development

MeSH Terms

Brain
Cerebral Cortex*
Drug Resistant Epilepsy
Embryology*
Humans
Intellectual Disability
Malformations of Cortical Development
Nervous System Diseases

Reference

References

1. Andrade DM. Genetic basis in epilepsies caused by malformations of cortical development and in those with structurally normal brain. Hum Genet. 126:173–193. 2009.
Article
2. Anton ES, Marchionni MA, Lee KF, Rakic P. Role of GGF/neuregulin signaling in interactions between migrating neurons and radial glia in the developing cerebral cortex. Development. 124:3501–3510. 1997.
Article
3. Barkovich AJ, Guerrini R, Kuzniecky RI, Jackson GD, Dobyns WB. A developmental and genetic classification for malformations of cortical development: update 2012. Brain. 135:1348–1369. 2012.
Article
4. Barkovich AJ, Kuzniecky RI. Neuroimaging of focal malformations of cortical development. J Clin Neurophysiol. 13:481–494. 1996.
Article
5. Barkovich AJ, Kuzniecky RI, Dobyns WB, Jackson GD, Becker LE, Evrard P. A classification scheme for malformations of cortical development. Neuropediatrics. 27:59–63. 1996.
Article
6. Barkovich AJ, Kuzniecky RI, Jackson GD, Guerrini R, Dobyns WB. A developmental and genetic classification for malformations of cortical development. Neurology. 65:1873–1887. 2005.
Article
7. Barkovich AJ, Raybaud CA. Malformations of cortical development. Neuroimaging Clin N Am. 14:401–423. 2004.
Article
8. Buysse K, Riemersma M, Powell G, van Reeuwijk J, Chitayat D, Roscioli T, et al. Missense mutations in beta-1,3-N-acetylglucosaminyltransferase 1 (B3GNT1) cause Walker-Warburg syndrome. Hum Mol Genet. 22:1746–1754. 2013.
Article
9. Bystron I, Blakemore C, Rakic P. Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev Neurosci. 9:110–122. 2008.
Article
10. Crino PB, Nathanson KL, Henske EP. The tuberous sclerosis complex. N Engl J Med. 355:1345–1356. 2006.
Article
11. D’Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature. 374:719–723. 1995.
Article
12. Dehay C, Kennedy H. Cell-cycle control and cortical development. Nat Rev Neurosci. 8:438–450. 2007.
Article
13. DiLiberti JH. Inherited macrocephaly-hamartoma syndromes. Am J Med Genet. 79:284–290. 1998.
Article
14. Dulabon L, Olson EC, Taglienti MG, Eisenhuth S, McGrath B, Walsh CA, et al. Reelin binds alpha3beta1 integrin and inhibits neuronal migration. Neuron. 27:33–44. 2000.
Article
15. Elias LA, Wang DD, Kriegstein AR. Gap junction adhesion is necessary for radial migration in the neocortex. Nature. 448:901–907. 2007.
Article
16. Ferland RJ, Batiz LF, Neal J, Lian G, Bundock E, Lu J, et al. Disruption of neural progenitors along the ventricular and subventricular zones in periventricular heterotopia. Hum Mol Genet. 18:497–516. 2009.
Article
17. Fernandez V, Llinares-Benadero C, Borrell V. Cerebral cortex expansion and folding: what have we learned? EMBO J. 35:1021–1044. 2016.
Article
18. Fox JW, Lamperti ED, Eksioglu YZ, Hong SE, Feng Y, Graham DA, et al. Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia. Neuron. 21:1315–1325. 1998.
Article
19. Gross RE, Mehler MF, Mabie PC, Zang Z, Santschi L, Kessler JA. Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron. 17:595–606. 1996.
Article
20. Gruber R, Zhou Z, Sukchev M, Joerss T, Frappart PO, Wang ZQ. MCPH1 regulates the neuroprogenitor division mode by coupling the centrosomal cycle with mitotic entry through the Chk1-Cdc25 pathway. Nat Cell Biol. 13:1325–1334. 2011.
Article
21. Guerrini R, Dobyns WB, Barkovich AJ. Abnormal development of the human cerebral cortex: genetics, functional consequences and treatment options. Trends Neurosci. 31:154–162. 2008.
Article
22. Guerrini R, Marini C. Genetic malformations of cortical development. Exp Brain Res. 173:322–333. 2006.
Article
23. Gul A, Hassan MJ, Mahmood S, Chen W, Rahmani S, Naseer MI, et al. Genetic studies of autosomal recessive primary microcephaly in 33 Pakistani families: novel sequence variants in ASPM gene. Neurogenetics. 7:105–110. 2006.
Article
24. Hansen DV, Lui JH, Parker PR, Kriegstein AR. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature. 464:554–561. 2010.
Article
25. Jackson AP, Eastwood H, Bell SM, Adu J, Toomes C, Carr IM, et al. Identification of microcephalin, a protein implicated in determining the size of the human brain. Am J Hum Genet. 71:136–142. 2002.
Article
26. Klyachko VA, Stevens CF. Connectivity optimization and the positioning of cortical areas. Proc Natl Acad Sci U S A. 100:7937–7941. 2003.
Article
27. Kriegstein AR. Constructing circuits: neurogenesis and migration in the developing neocortex. Epilepsia 46 Suppl. 7:15–21. 2005.
Article
28. Kriegstein AR, Noctor SC. Patterns of neuronal migration in the embryonic cortex. Trends Neurosci. 27:392–399. 2004.
Article
29. Kumar A, Blanton SH, Babu M, Markandaya M, Girimaji SC. Genetic analysis of primary microcephaly in Indian families: novel ASPM mutations. Clin Genet. 66:341–348. 2004.
Article
30. Lee JH, Huynh M, Silhavy JL, Kim S, Dixon-Salazar T, Heiberg A, et al. De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat Genet. 44:941–945. 2012.
Article
31. Luo R, Jeong SJ, Jin Z, Strokes N, Li S, Piao X. G protein-coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination. Proc Natl Acad Sci U S A. 108:12925–12930. 2011.
Article
32. Machon O, van den Bout CJ, Backman M, Kemler R, Krauss S. Role of beta-catenin in the developing cortical and hippocampal neuroepithelium. Neuroscience. 122:129–143. 2003.
Article
33. Morris-Rosendahl DJ, Najm J, Lachmeijer AM, Sztriha L, Martins M, Kuechler A, et al. Refining the phenotype of alpha-1a Tubulin (TUBA1A) mutation in patients with classical lissencephaly. Clin Genet. 74:425–433. 2008.
Article
34. Nadarajah B, Parnavelas JG. Modes of neuronal migration in the developing cerebral cortex. Nat Rev Neurosci. 3:423–432. 2002.
Article
35. O’Leary DD, Borngasser D. Cortical ventricular zone progenitors and their progeny maintain spatial relationships and radial patterning during preplate development indicating an early protomap. Cereb Cortex 16 Suppl. 1:i46–i56. 2006.
36. Olson EC, Walsh CA. Smooth, rough and upside-down neocortical development. Curr Opin Genet Dev. 12:320–327. 2002.
Article
37. Palmini A, Najm I, Avanzini G, Babb T, Guerrini R, Foldvary-Schaefer N, et al. Terminology and classification of the cortical dysplasias. Neurology. 62(6 Suppl 3):S2–S8. 2004.
Article
38. Phoenix TN, Temple S. Spred1, a negative regulator of Ras-MAPK-ERK, is enriched in CNS germinal zones, dampens NSC proliferation, and maintains ventricular zone structure. Genes Dev. 24:45–56. 2010.
Article
39. Pilz DT, Matsumoto N, Minnerath S, Mills P, Gleeson JG, Allen KM, et al. LIS1 and XLIS (DCX) mutations cause most classical lissencephaly, but different patterns of malformation. Hum Mol Genet. 7:2029–2037. 1998.
Article
40. Pontious A, Kowalczyk T, Englund C, Hevner RF. Role of intermediate progenitor cells in cerebral cortex development. Dev Neurosci. 30:24–32. 2008.
Article
41. Rakic P. A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci. 18:383–388. 1995.
Article
42. Rash BG, Lim HD, Breunig JJ, Vaccarino FM. FGF signaling expands embryonic cortical surface area by regulating Notch-dependent neurogenesis. J Neurosci. 31:15604–15617. 2011.
Article
43. Rash BG, Tomasi S, Lim HD, Suh CY, Vaccarino FM. Cortical gyrification induced by fibroblast growth factor 2 in the mouse brain. J Neurosci. 33:10802–10814. 2013.
Article
44. Raybaud C, Widjaja E. Development and dysgenesis of the cerebral cortex: malformations of cortical development. Neuroimaging Clin N Am. 21:483–543. vii, 2011.
Article
45. Rivière JB, Mirzaa GM, O’Roak BJ, Beddaoui M, Alcantara D, Conway RL, et al. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat Genet. 44:934–940. 2012.
Article
46. Roll P, Rudolf G, Pereira S, Royer B, Scheffer IE, Massacrier A, et al. SRPX2 mutations in disorders of language cortex and cognition. Hum Mol Genet. 15:1195–1207. 2006.
Article
47. Roscioli T, Kamsteeg EJ, Buysse K, Maystadt I, van Reeuwijk J, van den Elzen C, et al. Mutations in ISPD cause Walker-Warburg syndrome and defective glycosylation of alpha-dystroglycan. Nat Genet. 44:581–585. 2012.
Article
48. Sahara S, O’Leary DD. Fgf10 regulates transition period of cortical stem cell differentiation to radial glia controlling generation of neurons and basal progenitors. Neuron. 63:48–62. 2009.
Article
49. Sarkisian MR, Bartley CM, Chi H, Nakamura F, Hashimoto-Torii K, Torii M, et al. MEKK4 signaling regulates filamin expression and neuronal migration. Neuron. 52:789–801. 2006.
Article
50. Sheen VL, Dixon PH, Fox JW, Hong SE, Kinton L, Sisodiya SM, et al. Mutations in the X-linked filamin 1 gene cause periventricular nodular heterotopia in males as well as in females. Hum Mol Genet. 10:1775–1783. 2001.
Article
51. Sheen VL, Walsh CA. Periventricular heterotopia: new insights into Ehlers-Danlos syndrome. Clin Med Res. 3:229–233. 2005.
Article
52. Siegenthaler JA, Ashique AM, Zarbalis K, Patterson KP, Hecht JH, Kane MA, et al. Retinoic acid from the meninges regulates cortical neuron generation. Cell. 139:597–609. 2009.
Article
53. Sun T, Hevner RF. Growth and folding of the mammalian cerebral cortex: from molecules to malformations. Nat Rev Neurosci. 15:217–232. 2014.
Article
54. Super H, Soriano E, Uylings HB. The functions of the preplate in development and evolution of the neocortex and hippocampus. Brain Res Brain Res Rev. 27:40–64. 1998.
Article
55. van Reeuwijk J, Brunner HG, van Bokhoven H. Glyc-O-genetics of Walker-Warburg syndrome. Clin Genet. 67:281–289. 2005.
Article
56. Walsh CA. Genetic malformations of the human cerebral cortex. Neuron. 23:19–29. 1999.
Article
57. Walsh CA. Neuroscience in the post-genome era: an overview. Trends Neurosci. 24:363–364. 2001.
Article
58. Wang X, Tsai JW, LaMonica B, Kriegstein AR. A new subtype of progenitor cell in the mouse embryonic neocortex. Nat Neurosci. 14:555–561. 2011.
Article
59. Woods CG, Bond J, Enard W. Autosomal recessive primary microcephaly (MCPH): a review of clinical, molecular, and evolutionary findings. Am J Hum Genet. 76:717–728. 2005.
Article
60. Yamamoto T, Kato Y, Karita M, Kawaguchi M, Shibata N, Kobayashi M. Expression of genes related to muscular dystrophy with lissencephaly. Pediatr Neurol. 31:183–190. 2004.
Article
Full Text Links
  • JKNS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr