1. Wichelhaus A, Brauchli L, Ball J, Mertmann M. Mechanical behavior and clinical application of nickel-titanium closed-coil springs under different stress levels and mechanical loading cycles. Am J Orthod Dentofacial Orthop. 2010; 137:671–678.
Article
2. Bezrouk A, Balsky L, Smutny M, Selke Krulichova I, Zahora J, Hanus J, et al. Thermomechanical properties of nickel-titanium closed-coil springs and their implications for clinical practice. Am J Orthod Dentofacial Orthop. 2014; 146:319–327.
Article
3. Burstone CJ, Qin B, Morton JY. Chinese NiTi wire--a new orthodontic alloy. Am J Orthod. 1985; 87:445–452.
Article
4. Miura F, Mogi M, Ohura Y, Hamanaka H. The superelastic property of the Japanese NiTi alloy wire for use in orthodontics. Am J Orthod Dentofacial Orthop. 1986; 90:1–10.
Article
5. Miura F, Mogi M, Ohura Y, Karibe M. The super-elastic Japanese NiTi alloy wire for use in orthodontics. Part III. Studies on the Japanese NiTi alloy coil springs. Am J Orthod Dentofacial Orthop. 1988; 94:89–96.
Article
6. Maganzini AL, Wong AM, Ahmed MK. Forces of various nickel titanium closed coil springs. Angle Orthod. 2010; 80:182–187.
Article
7. Manhartsberger C, Seidenbusch W. Force delivery of Ni-Ti coil springs. Am J Orthod Dentofacial Orthop. 1996; 109:8–21.
Article
8. Ravipati RR, Sivakumar A, Sudhakar P, Padmapriya CV, Bhaskar M, Azharuddin M. An adjustment in NiTi closed coil spring for an extended range of activation. Int J Orthod Milwaukee. 2014; 25:21–22.
9. Vidoni G, Perinetti G, Antoniolli F, Castaldo A, Contardo L. Combined aging effects of strain and thermocycling on unload deflection modes of nickel-titanium closed-coil springs: an in-vitro comparative study. Am J Orthod Dentofacial Orthop. 2010; 138:451–457.
Article
10. Alavi S, Haerian A. The effects of aging process and preactivation on mechanical properties of nickel-titanium closed coil springs. Dent Res J (Isfahan). 2015; 12:231–234.
11. Segner D, Ibe D. Properties of superelastic wires and their relevance to orthodontic treatment. Eur J Orthod. 1995; 17:395–402.
Article
12. Bartzela TN, Senn C, Wichelhaus A. Load-deflection characteristics of superelastic nickel-titanium wires. Angle Orthod. 2007; 77:991–998.
Article
13. Jee KK, Kim YB, Han JH. inventor; Korea Institute of Science and Technology, assignee. Method to provide initial tension for coil spring and its application. United States Patent US 8,186,060. 2012. 05. 29.
14. Jee KK, Han JH, Jang WY. Improvement of actuating properties of a SMA coil spring by change in coil orientation. Mater Sci Forum. 2013; 738-739:589–594.
Article
15. Santoro M, Nicolay OF, Cangialosi TJ. Pseudoelasticity and thermoelasticity of nickel-titanium alloys: a clinically oriented review. Part I: temperature transitional ranges. Am J Orthod Dentofacial Orthop. 2001; 119:587–593.
Article
16. Vieira CI, Caldas SG, Martins LP, Martins RP. Superelasticity and force plateau of nickel-titanium springs: an in vitro study. Dental Press J Orthod. 2016; 21:46–55.
Article
17. Martins RP, Buschang PH, Gandini LG Jr. Group A T-loop for differential moment mechanics: an implant study. Am J Orthod Dentofacial Orthop. 2009; 135:182–189.
Article
18. von Fraunhofer JA, Bonds PW, Johnson BE. Force generation by orthodontic coil springs. Angle Orthod. 1993; 63:145–148.
19. Tripolt H, Burstone CJ, Bantleon P, Manschiebel W. Force characteristics of nickel-titanium tension coil springs. Am J Orthod Dentofacial Orthop. 1999; 115:498–507.
Article
20. Vieira CIV, Reis JMDSN, Vaz LG, Martins LP, Martins RP. Deformation of nickel-titanium closed coil springs: an in vitro study. Dental Press J Orthod. 2017; 22:38–46.
Article