Ann Pediatr Endocrinol Metab.  2019 Jun;24(2):92-98. 10.6065/apem.2019.24.2.92.

Risk of cancer in patients treated with recombinant human growth hormone in childhood

Affiliations
  • 1Dipartimento Pediatrico Universitario Ospedaliero, “Bambino Gesù” Children's Hospital – Tor Vergata University, Rome, Italy. stefano.cianfarani@uniroma2.it
  • 2Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Stockholm, Sweden.

Abstract

Recombinant human growth hormone (GH) has been in use for over 30 years, and its indications have gradually expanded from the classical replacement therapy in GH deficiency (GHD) to pharmacological therapy in patients with normal GH secretion. The insulin-like growth factor-I (IGF-I ) is closely GH dependent and is the effector of GH biological actions in peripheral tissues. Since IGF-I has potent mitogenic and antiapoptotic effects, the use of GH, especially outside GHD, has raised safety concern regarding cancer risk. The results of experimental, epidemiological and observational studies are not univocal and a number of biases and confounders affect the interpretation of data. The aim of this review is to critically review the data linking GH therapy during childhood with cancer risk, highlighting strengths and weaknesses of the available evidence.

Keyword

Growth hormone; Insulin-like growth factor; Cancer

MeSH Terms

Bias (Epidemiology)
Growth Hormone
Human Growth Hormone*
Humans
Humans*
Insulin-Like Growth Factor I
Growth Hormone
Human Growth Hormone
Insulin-Like Growth Factor I

Figure

  • Fig. 1. The IGF system. IGF, insulin-like growth factor; IGF1R, IGF 1 receptor; IGF2R, IGF 2 receptor; M6PCI, mannose-6-phosphate cation independent; IGFBP, insulin-like growth factor binding protein; ALS, acid-labile subunit.


Cited by  1 articles

Approach to Short Stature in Children and Adolescent
Hyo-Kyoung Nam
Ewha Med J. 2021;44(4):111-116.    doi: 10.12771/emj.2021.44.4.111.


Reference

References

1. Clayton PE, Banerjee I, Murray PG, Renehan AG. Growth hormone, the insulin-like growth factor axis, insulin and cancer risk. Nat Rev Endocrinol. 2011; 7:11–24.
2. Ranke MB, Wit JM. Growth hormone - past, present and future. Nat Rev Endocrinol. 2018; 14:285–300.
3. LeRoith D, Werner H, Beitner-Johnson D, Roberts CT Jr. Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr Rev. 1995; 16:143–63.
4. Le Roith D, Bondy C, Yakar S, Liu JL, Butler A. The somatomedin hypothesis: 2001. Endocr Rev. 2001; 22:53–74.
5. Baker J, Liu JP, Robertson EJ, Efstratiadis A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell. 1993; 75:73–82.
6. Shimasaki S, Ling N. Identification and molecular characterization of insulin-like growth factor binding proteins (IGFBP-1, -2, -3, -4, -5 and -6). Prog Growth Factor Res. 1991; 3:243–66.
7. Cianfarani S, Holly JM. Somatomedin-binding proteins: what role do they play in the growth process? Eur J Pediatr. 1989; 149:76–9.
8. Hwa V, Oh Y, Rosenfeld RG. The insulin-like growth factor-binding protein (IGFBP) superfamily. Endocr Rev. 1999; 20:761–87.
9. Baxter RC. Circulating binding proteins for the insulinlike growth factors. Trends Endocrinol Metab. 1993; 4:91–6.
10. Guler HP, Zapf J, Schmid C, Froesch ER. Insulin-like growth factors I and II in healthy man. Estimations of half-lives and production rates. Acta Endocrinol (Copenh). 1989; 121:753–8.
11. Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev. 1995; 16:3–34.
12. Binoux M, Hossenlopp P. Insulin-like growth factor (IGF) and IGF-binding proteins: comparison of human serum and lymph. J Clin Endocrinol Metab. 1988; 67:509–14.
13. Twigg SM, Baxter RC. Insulin-like growth factor (IGF)-binding protein 5 forms an alternative ternary complex with IGFs and the acid-labile subunit. J Biol Chem. 1998; 273:6074–9.
14. Cianfarani S, Germani D, Rossi P, Spagnoli A, Mercanti D. Do insulin-like growth factor binding proteins (IGFBPs) modulate the IGF-I growth promoting and differentiating effects in human neuroblastoma cells? Eur J Endocrinol. 1996; 135:716–23.
15. Louvi A, Accili D, Efstratiadis A. Growth-promoting interaction of IGF-II with the insulin receptor during mouse embryonic development. Dev Biol. 1997; 189:33–48.
16. Kornfeld S. Structure and function of the mannose 6-phosphate/insulinlike growth factor II receptors. Annu Rev Biochem. 1992; 61:307–30.
17. Kaulsay KK, Mertani HC, Tornell J, Morel G, Lee KO, Lobie PE. Autocrine stimulation of human mammary carcinoma cell proliferation by human growth hormone. Exp Cell Res. 1999; 250:35–50.
18. Mukhina S, Mertani HC, Guo K, Lee KO, Gluckman PD, Lobie PE. Phenotypic conversion of human mammary carcinoma cells by autocrine human growth hormone. Proc Natl Acad Sci U S A. 2004; 101:15166–71.
19. Zhu T, Starling-Emerald B, Zhang X, Lee KO, Gluckman PD, Mertani HC, et al. Oncogenic transformation of human mammary epithelial cells by autocrine human growth hormone. Cancer Res. 2005; 65:317–24.
20. LeRoith D, Baserga R, Helman L, Roberts CT Jr. Insulin-like growth factors and cancer. Ann Intern Med. 1995; 122:54–9.
21. Daughaday WH. The possible autocrine/paracrine and endocrine roles of insulin-like growth factors of human tumors. Endocrinology. 1990; 127:1–4.
22. Macaulay VM. Insulin-like growth factors and cancer. Br J Cancer. 1992; 65:311–20.
23. Reeve JG, Kirby LB, Brinkman A, Hughes SA, Schwander J, Bleehen NM. Insulin-like growth-factor-binding protein gene expression and protein production by human tumour cell lines. Int J Cancer. 1992; 51:818–21.
24. Frost VJ, Macaulay VM, Wass JA, Holly JM. Proteolytic modification of insulin-like growth factor-binding proteins: comparison of conditioned media from human cell lines, circulating proteases and characterized enzymes. J Endocrinol. 1993; 138:545–54.
25. Blakesley VA, Kalebic T, Helman LJ, Stannard B, Faria TN, Roberts CT Jr, et al. Tumorigenic and mitogenic capacities are reduced in transfected fibroblasts expressing mutant insulin-like growth factor (IGF)-I receptors. The role of tyrosine residues 1250, 1251, and 1316 in the carboxy-terminus of the IGF-I receptor. Endocrinology. 1996; 137:410–7.
26. Leventhal PS, Feldman EL. Insulin-like growth factors as regulators of cell motility signaling mechanisms. Trends Endocrinol Metab. 1997; 8:1–6.
27. Puglianiello A, Germani D, Rossi P, Cianfarani S. IGF-I stimulates chemotaxis of human neuroblasts. Involvement of type 1 IGF receptor, IGF binding proteins, phosphatidylinositol-3 kinase pathway and plasmin system. J Endocrinol. 2000; 165:123–31.
28. Sporn MB, Roberts AB. Autocrine growth factors and cancer. Nature. 1985; 313:745–7.
29. Swanson SM, Unterman TG. The growth hormone-deficient Spontaneous Dwarf rat is resistant to chemically induced mammary carcinogenesis. Carcinogenesis. 2002; 23:977–82.
30. Ramsey MM, Ingram RL, Cashion AB, Ng AH, Cline JM, Parlow AF, et al. Growth hormone-deficient dwarf animals are resistant to dimethylbenzanthracine (DMBA)-induced mammary carcinogenesis. Endocrinology. 2002; 143:4139–42.
31. Yang XF, Beamer WG, Huynh H, Pollak M. Reduced growth of human breast cancer xenografts in hosts homozygous for the lit mutation. Cancer Res. 1996; 56:1509–11.
32. Tornell J, Rymo L, Isaksson OG. Induction of mammary adenocarcinomas in metallothionein promoter-human growth hormone transgenic mice. Int J Cancer. 1991; 49:114–7.
33. Chan JM, Stampfer MJ, Giovannucci E, Gann PH, Ma J, Wilkinson P, et al. Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science. 1998; 279:563–6.
34. Giovannucci E, Pollak MN, Platz EA, Willett WC, Stampfer MJ, Majeed N, et al. A prospective study of plasma insulin-like growth factor-1 and binding protein-3 and risk of colorectal neoplasia in women. Cancer Epidemiol Biomarkers Prev. 2000; 9:345–9.
35. Hankinson SE, Willett WC, Colditz GA, Hunter DJ, Michaud DS, Deroo B, et al. Circulating concentrations of insulin-like growth factor-I and risk of breast cancer. Lancet. 1998; 351:1393–6.
36. Ma J, Pollak MN, Giovannucci E, Chan JM, Tao Y, Hennekens CH, et al. Prospective study of colorectal cancer risk in men and plasma levels of insulin-like growth factor (IGF)-I and IGF-binding protein-3. J Natl Cancer Inst. 1999; 91:620–5.
37. Travis RC, Appleby PN, Martin RM, Holly JMP, Albanes D, Black A, et al. A meta-analysis of individual participant data reveals an association between circulating levels of IGF-I and prostate cancer risk. Cancer Res. 2016; 76:2288–300.
38. Baris D, Gridley G, Ron E, Weiderpass E, Mellemkjaer L, Ekbom A, et al. Acromegaly and cancer risk: a cohort study in Sweden and Denmark. Cancer Causes Control. 2002; 13:395–400.
39. Kauppinen-Makelin R, Sane T, Valimaki MJ, Markkanen H, Niskanen L, Ebeling T, et al. Increased cancer incidence in acromegaly--a nationwide survey. Clin Endocrinol (Oxf). 2010; 72:278–9.
40. Orme SM, McNally RJ, Cartwright RA, Belchetz PE. Mortality and cancer incidence in acromegaly: a retrospective cohort study. United Kingdom Acromegaly Study Group. J Clin Endocrinol Metab. 1998; 83:2730–4.
41. Ron E, Gridley G, Hrubec Z, Page W, Arora S, Fraumeni JF Jr. Acromegaly and gastrointestinal cancer. Cancer. 1991; 68:1673–7.
42. Anand A, Anand N. Acromegaly and gastrointestinal cancer. Arch Intern Med. 1995; 155:213.
43. Shevah O, Laron Z. Patients with congenital deficiency of IGF-I seem protected from the development of malignancies: a preliminary report. Growth Horm IGF Res. 2007; 17:54–7.
44. Steuerman R, Shevah O, Laron Z. Congenital IGF1 deficiency tends to confer protection against postnatal development of malignancies. Eur J Endocrinol. 2011; 164:485–9.
45. Leslie M. Genetics and disease. Growth defect blocks cancer and diabetes. Science. 2011; 331:837.
46. Watanabe S, Mizuno S, Oshima LH, Tsunematsu Y, Fujimoto J, Komiyama A. Leukemia and other malignancies among GH users. J Pediatr Endocrinol. 1993; 6:99–108.
47. Bell J, Parker KL, Swinford RD, Hoffman AR, Maneatis T, Lippe B. Long-term safety of recombinant human growth hormone in children. J Clin Endocrinol Metab. 2010; 95:167–77.
48. Swerdlow AJ, Higgins CD, Adlard P, Preece MA. Risk of cancer in patients treated with human pituitary growth hormone in the UK, 1959-85: a cohort study. Lancet. 2002; 360:273–7.
49. van Bunderen CC, van Nieuwpoort IC, Arwert LI, Heymans MW, Franken AA, Koppeschaar HP, et al. Does growth hormone replacement therapy reduce mortality in adults with growth hormone deficiency? Data from the Dutch National Registry of Growth Hormone Treatment in adults. J Clin Endocrinol Metab. 2011; 96:3151–9.
50. Gaillard RC, Mattsson AF, Akerblad AC, Bengtsson BA, Cara J, Feldt-Rasmussen U, et al. Overall and cause-specific mortality in GH-deficient adults on GH replacement. Eur J Endocrinol. 2012; 166:1069–77.
51. Carel JC, Ecosse E, Landier F, Meguellati-Hakkas D, Kaguelidou F, Rey G, et al. Long-term mortality after recombinant growth hormone treatment for isolated growth hormone deficiency or childhood short stature: preliminary report of the French SAGhE study. J Clin Endocrinol Metab. 2012; 97:416–25.
52. Wilton P, Mattsson AF, Darendeliler F. Growth hormone treatment in children is not associated with an increase in the incidence of cancer: experience from KIGS (Pfizer International Growth Database). J Pediatr. 2010; 157:265–70.
53. Child CJ, Zimmermann AG, Woodmansee WW, Green DM, Li JJ, Jung H, et al. Assessment of primary cancers in GH-treated adult hypopituitary patients: an analysis from the Hypopituitary Control and Complications Study. Eur J Endocrinol. 2011; 165:217–23.
54. Woodmansee WW, Zimmermann AG, Child CJ, Rong Q, Erfurth EM, Beck-Peccoz P, et al. Incidence of second neoplasm in childhood cancer survivors treated with GH: an analysis of GeNeSIS and HypoCCS. Eur J Endocrinol. 2013; 168:565–73.
55. Ergun-Longmire B, Mertens AC, Mitby P, Qin J, Heller G, Shi W, et al. Growth hormone treatment and risk of second neoplasms in the childhood cancer survivor. J Clin Endocrinol Metab. 2006; 91:3494–8.
56. Mackenzie S, Craven T, Gattamaneni HR, Swindell R, Shalet SM, Brabant G. Long-term safety of growth hormone replacement after CNS irradiation. J Clin Endocrinol Metab. 2011; 96:2756–61.
57. Deodati A, Ferroli BB, Cianfarani S. Association between growth hormone therapy and mortality, cancer and cardiovascular risk: systematic review and meta-analysis. Growth Horm IGF Res. 2014; 24:105–11.
58. Savendahl L, Maes M, Albertsson-Wikland K, Borgstrom B, Carel JC, Henrard S, et al. Long-term mortality and causes of death in isolated GHD, ISS, and SGA patients treated with recombinant growth hormone during childhood in Belgium, The Netherlands, and Sweden: preliminary report of 3 countries participating in the EU SAGhE study. J Clin Endocrinol Metab. 2012; 97:E213–7.
59. Albertsson-Wikland K, Martensson A, Savendahl L, Niklasson A, Bang P, Dahlgren J, et al. Mortality Is not increased in recombinant human growth hormone-treated patients when adjusting for birth characteristics. J Clin Endocrinol Metab. 2016; 101:2149–59.
60. Quigley CA, Child CJ, Zimmermann AG, Rosenfeld RG, Robison LL, Blum WF. Mortality in children receiving growth hormone treatment of growth disorders: data from the genetics and neuroendocrinology of short stature international study. J Clin Endocrinol Metab. 2017; 102:3195–205.
61. Child CJ, Zimmermann AG, Chrousos GP, Cummings E, Deal CL, Hasegawa T, et al. Safety outcomes during pediatric GH therapy: final results from the prospective GeNeSIS observational program. J Clin Endocrinol Metab. 2019; 104:379–89.
62. Allen DB, Backeljauw P, Bidlingmaier M, Biller BM, Boguszewski M, Burman P, et al. GH safety workshop position paper: a critical appraisal of recombinant human GH therapy in children and adults. Eur J Endocrinol. 2016; 174:P1–9.
63. Sklar CA, Mertens AC, Mitby P, Occhiogrosso G, Qin J, Heller G, et al. Risk of disease recurrence and second neoplasms in survivors of childhood cancer treated with growth hormone: a report from the Childhood Cancer Survivor Study. J Clin Endocrinol Metab. 2002; 87:3136–41.
64. Patterson BC, Chen Y, Sklar CA, Neglia J, Yasui Y, Mertens A, et al. Growth hormone exposure as a risk factor for the development of subsequent neoplasms of the central nervous system: a report from the childhood cancer survivor study. J Clin Endocrinol Metab. 2014; 99:2030–7.
65. Swerdlow AJ, Cooke R, Albertsson-Wikland K, Borgstrom B, Butler G, Cianfarani S, et al. Description of the SAGhE Cohort: a large European Study of mortality and cancer incidence risks after childhood treatment with recombinant growth hormone. Horm Res Paediatr. 2015; 84:172–83.
66. Swerdlow AJ, Cooke R, Beckers D, Borgstrom B, Butler G, Carel JC, et al. Cancer risks in patients treated with growth hormone in childhood: the SAGhE European Cohort Study. J Clin Endocrinol Metab. 2017; 102:1661–72.
67. Poidvin A, Carel JC, Ecosse E, Levy D, Michon J, Coste J. Increased risk of bone tumors after growth hormone treatment in childhood: a population-based cohort study in France. Cancer Med. 2018; Jun. 14. [Epub]. https://doi.org/10.1002/cam4.1602.
68. Rosenfeld RG, Cohen P, Robison LL, Bercu BB, Clayton P, Hoffman AR, et al. Long-term surveillance of growth hormone therapy. J Clin Endocrinol Metab. 2012; 97:68–72.
69. Rosenfeld RG. Pharmacological interventions for short stature: pros and cons. Nestle Nutr Inst Workshop Ser. 2013; 71:207–17.
Full Text Links
  • APEM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr