1. Navon-Venezia S, Kondratyeva K, Carattoli A.
Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev. 2017; 41:252–275.
Article
2. Mathers AJ, Peirano G, Pitout JD. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant
Enterobacteriaceae. Clin Microbiol Rev. 2015; 28:565–591.
Article
3. Ko KS, Lee JY, Baek JY, Suh JY, Lee MY, Choi JY, et al. Predominance of an ST11 extended-spectrum beta-lactamase-producing
Klebsiella pneumoniae clone causing bacteraemia and urinary tract infections in Korea. J Med Microbiol. 2010; 59:822–828.
Article
4. Zhao WH, Hu ZQ. Epidemiology and genetics of CTX-M extended-spectrum β-lactamases in Gram-negative bacteria. Crit Rev Microbiol. 2013; 39:79–101.
Article
5. Shin J, Ko KS. Comparative study of genotype and virulence in CTX-M-producing and non-extended-spectrum-β-lactamase-producing
Klebsiella pneumoniae isolates. Antimicrob Agents Chemother. 2014; 58:2463–2467.
Article
6. Shin J, Ko KS. Effect of plasmids harbouring
blaCTX-M on the virulence and fitness of
Escherichia coli ST131 isolates. Int J Antimicrob Agents. 2015; 46:214–218.
Article
7. Woodford N, Carattoli A, Karisik E, Underwood A, Ellington MJ, Livermore DM. Complete nucleotide sequences of plasmids pEK204, pEK499, and pEK516, encoding CTX-M enzymes in three major
Escherichia coli lineages from the United Kingdom, all belonging to the international O25:H4-ST131 clone. Antimicrob Agents Chemother. 2009; 53:4472–4482.
Article
8. Doumith M, Findlay J, Hirani H, Hopkins KL, Livermore DM, Dodgson A, et al. Major role of pKpQIL-like plasmids in the early dissemination of KPC-type carbapenemases in the UK. J Antimicrob Chemother. 2017; 72:2241–2248.
Article
9. Page R, Peti W. Toxin-antitoxin systems in bacterial growth arrest and persistence. Nat Chem Biol. 2016; 12:208–214.
Article
10. Lewis K. Persister cells. Annu Rev Microbiol. 2010; 64:357–372.
Article
11. Michiels JE, Van den Bergh B, Verstraeten N, Michiels J. Molecular mechanisms and clinical implications of bacterial persistence. Drug Resist Updat. 2016; 29:76–89.
Article
12. Chung ES, Wi YM, Ko KS. Variation in formation of persister cells against colistin in
Acinetobacter baumannii isolates and its relationship with treatment failure. J Antimicrob Chemother. 2017; 72:2133–2135.
Article
13. Barrett TC, MokWWK , Murawski AM, Brynildsen MP. Enhanced antibiotic resistance development from fluoroquinolone persisters after a single exposure to antibiotic. Nat Commun. 2019; 10:1177.
Article
14. Kim SY, Ko KS. Diverse plasmids harboring
blaCTX-M-15 in
Klebsiella pneumoniae ST11 isolates from several Asian countries. Microb Drug Resist. 2019; 25:227–232.
Article
15. Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing: 27th informational supplement, M100-S27. Wayne, PA: CLSI;2017.
16. Bhargava N, Sharma P, Capalash N. Pyocyanin stimulates quorum sensing-mediated tolerance to oxidative stress and increases persister cell populations in
Acinetobacter baumannii. Infect Immun. 2014; 82:3417–3425.
Article
17. Lee JY, Chung ES, Na IY, Kim H, Shin D, Ko KS. Development of colistin resistance in pmrA-, phoP-, parR-, and cprR-inactivated mutants of Pseudomonas aeruginosa. J Antimicrob Chemother. 2014; 69:2966–2971.
18. Fernández-García L, Blasco L, Lopez M, Bou G, García-Contreras R, Wood T, et al. Toxin-antitoxin systems in clinical pathogens. Toxins (Basel). 2016; 8:E227.
Article
19. Kamarthapu V, Epshtein V, Benjamin B, Proshkin S, Mironov A, Cashel M, et al. ppGpp couples transcription to DNA repair in
E. coli. Science. 2016; 352:993–996.
Article