1. Farooq A, Anwar S, Awais M, Alnowami M. Artificial intelligence based smart diagnosis of alzheimer's disease and mild cognitive impairment. 2017. p. 1–4.
2. Vieira S, Pinaya WHL, Mechelli A. Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications. Neuroscience and Biobehavioral Reviews. 2017; 74:58–75.
Article
3. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521:436.
Article
4. Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. 2014. p. 818–833.
5. Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017; 542:115.
Article
6. Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016; 316:2402–2410.
Article
7. Golan R, Jacob C, Denzinger J. Lung nodule detection in CT images using deep convolutional neural networks. 2016. p. 243–250.
8. Kooi T, Litjens G, Van Ginneken B, et al. Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal. 2017; 35:303–312.
Article
9. Liu F, Zhou Z, Samsonov A, et al. Deep learning approach for evaluating knee MR images: Achieving high diagnostic performance for cartilage lesion detection. Radiology. 2018; 289:160–169.
Article
10. Sharif MS, Abbod M, Amira A, Zaidi H. Artificial neural network-based system for PET volume segmentation. International Journal of Biomedical Imaging. 2010; 2010:105610.
Article
11. Illán I, Górriz JM, Ramírez J, et al. 18F-FDG PET imaging analysis for computer aided Alzheimer’s diagnosis. Inf Sci. 2011; 181:903–916.
Article
12. Bien N, Rajpurkar P, Ball RL, et al. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet. PLoS Medicine. 2018; 15:e1002699.
Article
13. Taylor AG, Mielke C, Mongan J. Automated detection of moderate and large pneumothorax on frontal chest X-rays using deep convolutional neural networks: A retrospective study. PLoS Medicine. 2018; 15:e1002697.
Article
14. Woods RP, Grafton ST, Holmes CJ, Cherry SR, Mazziotta JC. Automated image registration: I. general methods and intrasubject, intramodality validation. J Comput Assist Tomogr. 1998; 22:139–152.
Article
16. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. ArXiv Preprint
arXiv:1409.1556. 2014.
17. Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions. 2015. p. 1–9.
18. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. 2016. p. 770–778.
19. Chollet F. Xception: Deep learning with depthwise separable convolutions. 2017. p. 1251–1258.
20. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. 2012. p. 1097–1105.
21. Salehinejad H, Valaee S, Dowdell T, Colak E, Barfett J. Generalization of deep neural networks for chest pathology classification in x-rays using generative adversarial networks. 2018. p. 990–994.
22. Turk M, Pentland A. Eigenfaces for recognition. J Cogn Neurosci. 1991; 3:71–86.
Article
23. Korez R, Likar B, Pernuš F, Vrtovec T. Model-based segmentation of vertebral bodies from MR images with 3D CNNs. 2016. p. 433–441.
24. López M, Ramírez J, Górriz JM, et al. Principal component analysis-based techniques and supervised classification schemes for the early detection of alzheimer’s disease. Neurocomputing. 2011; 74:1260–1271.
Article
25. Górriz JM, Lassl A, Ramírez J, Salas-Gonzalez D, Puntonet C, Lang E. Automatic selection of ROIs in functional imaging using gaussian mixture models. Neurosci Lett. 2009; 460:108–111.
Article
26. Suk H, Lee S, Shen D, Alzheimer’s Disease. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. Neuroimage. 2014; 101:569–582.
Article
27. Payan A, Montana G. Predicting alzheimer's disease: A neuroimaging study with 3D convolutional neural networks. ArXiv Preprint arXiv:1502.02506. 2015.
28. Hosseini-Asl E, Gimel'farb G, El-Baz A. Alzheimer's disease diagnostics by a deeply supervised adaptable 3D convolutional network. ArXiv Preprint arXiv:1607.00556. 2016.
29. de Brebisson A, Montana G. Deep neural networks for anatomical brain segmentation. 2015. p. 20–28.
30. Choi H, Jin KH. Fast and robust segmentation of the striatum using deep convolutional neural networks. J Neurosci Methods. 2016; 274:146–153.
Article
31. Chen H, Dou Q, Yu L, Qin J, Heng P. VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images. Neuroimage. 2018; 170:446–455.
Article
32. Nie D, Cao X, Gao Y, Wang L, Shen D. Estimating CT image from MRI data using 3D fully convolutional networks. Anonymous: Springer;2016. p. 170–178.
33. Li R, Zhang W, Suk H, et al. Deep learning based imaging data completion for improved brain disease diagnosis. 2014. p. 305–312.
34. Kim H, Hwang S. Deconvolutional feature stacking for weakly-supervised semantic segmentation. ArXiv Preprint arXiv:1602.04984. 2016.
35. Shin H, Roberts K, Lu L, Demner-Fushman D, Yao J, Summers RM. Learning to read chest x-rays: Recurrent neural cascade model for automated image annotation. 2016. p. 2497–2506.
36. Gao M, Xu Z, Lu L, et al. Segmentation label propagation using deep convolutional neural networks and dense conditional random field. 2016. p. 1265–1268.
37. Gao M, Bagci U, Lu L, et al. Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks. Computer Methods in Biomechanics and Biomedical Engineering. Imaging & Visualization. 2018; 6:1–6.
Article
38. Rajkomar A, Lingam S, Taylor AG, Blum M, Mongan J. High-throughput classification of radiographs using deep convolutional neural networks. J Digit Imaging. 2017; 30:95–101.
Article
39. Fonseca P, Mendoza J, Wainer J, et al. Automatic breast density classification using a convolutional neural network architecture search procedure. 2015. 9414:p. 941428.
40. Dalmış MU, Litjens G, Holland K, et al. Using deep learning to segment breast and fibroglandular tissue in MRI volumes. Med Phys. 2017; 44:533–546.
Article
41. Qiu Y, Wang Y, Yan S, et al. An initial investigation on developing a new method to predict short-term breast cancer risk based on deep learning technology. 2016. 9785:p. 978521.
42. Avendi M, Kheradvar A, Jafarkhani H. A combined deeplearning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med Image Anal. 2016; 30:108–119.
Article
43. Oktay O, Bai W, Lee M, et al. Multi-input cardiac image super-resolution using convolutional neural networks. 2016. p. 246–254.
44. Lessmann N, Išgum I, Setio AA, et al. Deep convolutional neural networks for automatic coronary calcium scoring in a screening study with low-dose chest CT. 2016. 9785:p. 978511.
45. Wolterink JM, Leiner T, de Vos BD, van Hamersvelt RW, Viergever MA, Išgum I. Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks. Med Image Anal. 2016; 34:123–136.
Article
46. Cai Y, Landis M, Laidley DT, Kornecki A, Lum A, Li S. Multi-modal vertebrae recognition using transformed deep convolution network. Comput Med Imaging Graph. 2016; 51:11–19.
Article
47. Miao S, Wang ZJ, Liao R. A CNN regression approach for real-time 2D/3D registration. IEEE Trans Med Imaging. 2016; 35:1352–1363.
Article
48. Spampinato C, Palazzo S, Giordano D, Aldinucci M, Leonardi R. Deep learning for automated skeletal bone age assessment in X-ray images. Med Image Anal. 2017; 36:41–51.
Article
49. Frid-Adar M, Diamant I, Klang E, Amitai M, Goldberger J, Greenspan H. GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing. 2018; 321:321–331.
Article