Anat Cell Biol.  2019 Jun;52(2):109-114. 10.5115/acb.2019.52.2.109.

Morphology of the human aorta and age-related changes: anatomical facts

Affiliations
  • 1Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand. pasuk034@gmail.com
  • 2Forensic Osteology Research Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
  • 3Excellence Center in Osteology Research and Training Center (ORTC), Chiang Mai University, Chiang Mai, Thailand.
  • 4Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia.

Abstract

Aorta is the largest artery in the human body. Its starting point is the aortic orifice of the aortic valve and it terminates at the level of the fourth lumbar vertebra. The main function of the aorta is to transport oxygenated blood to supply all the organs and cells. With advancing age, the structure and hence the function show progressive changes. Various changes in the aortic morphology include the luminal diameter of aorta, whole length of the aorta, thickness, the microstructural components also change, and these include collagen, elastin and smooth muscle cells. In addition, the dimensions of all segments of the aorta increase with age in both sexes. Since age is a major risk factor for degenerative change and diseases affecting the aorta, understanding the detailed anatomy of the aorta may provide essential information concerning the age-associated process of the aorta. Knowledge of the morphological changes in the aorta is also important for future clinical therapies pertaining to aortic disease. Additionally, the information regarding the structural changes with age may be applied for age determination. This review describes the overview of the anatomy of the aorta, age related changes in the morphology of the aorta and aortic diseases.

Keyword

Aorta; Thoracic aorta; Abdominal aorta; Age change

MeSH Terms

Aorta*
Aorta, Abdominal
Aorta, Thoracic
Aortic Diseases
Aortic Valve
Arteries
Collagen
Elastin
Human Body
Humans*
Myocytes, Smooth Muscle
Oxygen
Phenobarbital
Risk Factors
Spine
Collagen
Elastin
Oxygen
Phenobarbital

Figure

  • Fig. 1 Sketch demonstrating the morphometric measurement of the aorta in view from above. T, thickness; D, diameter; OC, outer circumference (dashed line); IC, inner circumference.


Cited by  3 articles

Variation in the vertebral levels of the origins of the abdominal aorta branches: a retrospective imaging study
Jehad Fataftah, Justin Z. Amarin, Haya H. Suradi, Maher T. Hadidi, Amjad T. Shatarat, Abdel Rahman A. Al Manasra, Samah Shahin, Darwish H. Badran
Anat Cell Biol. 2020;53(3):279-283.    doi: 10.5115/acb.20.048.

The estimation of age from elastic fibers in the tunica media of the aortic wall in a thai population: a preliminary study using aorta image analysis
Pornhatai Komutrattananont, Patison Palee, Sukon Prasitwattanaseree, Pasuk Mahakkanukrauh
Anat Cell Biol. 2020;53(3):284-291.    doi: 10.5115/acb.20.094.

Morphometric characteristics of the aorta and heart in situs inversus totalis
Uliana Pidvalna, Marianna Mirchuk, Dmytro Beshley, Lesya Mateshuk-Vatseba
Anat Cell Biol. 2022;55(2):259-263.    doi: 10.5115/acb.21.252.


Reference

1. Webb RC, Inscho EW. Age-related changes in the cardiovascular system. In : Aiyagari V, Gorelick PB, editors. Clinical Hypertension and Vascular Diseases: Hypertension in the Elderly. Totowa, NJ: Humana Press;2005. p. 11–21.
2. Karavidas A, Lazaros G, Tsiachris D, Pyrgakis V. Aging and the cardiovascular system. Hellenic J Cardiol. 2010; 51:421–427.
3. Fleg JL. Alterations in cardiovascular structure and function with advancing age. Am J Cardiol. 1986; 57:33C–44C.
Article
4. Redheuil A, Yu WC, Mousseaux E, Harouni AA, Kachenoura N, Wu CO, Bluemke D, Lima JA. Age-related changes in aortic arch geometry: relationship with proximal aortic function and left ventricular mass and remodeling. J Am Coll Cardiol. 2011; 58:1262–1270.
5. Gerstenblith G, Frederiksen J, Yin FC, Fortuin NJ, Lakatta EG, Weisfeldt ML. Echocardiographic assessment of a normal adult aging population. Circulation. 1977; 56:273–278.
Article
6. Xu X, Wang B, Ren C, Hu J, Greenberg DA, Chen T, Xie L, Jin K. Age-related impairment of vascular structure and functions. Aging Dis. 2017; 8:590–610.
Article
7. Virmani R, Avolio AP, Mergner WJ, Robinowitz M, Herderick EE, Cornhill JF, Guo SY, Liu TH, Ou DY, O'Rourke M. Effect of aging on aortic morphology in populations with high and low prevalence of hypertension and atherosclerosis. Comparison between occidental and Chinese communities. Am J Pathol. 1991; 139:1119–1129.
8. Nagai Y, Metter EJ, Earley CJ, Kemper MK, Becker LC, Lakatta EG, Fleg JL. Increased carotid artery intimal-medial thickness in asymptomatic older subjects with exercise-induced myocardial ischemia. Circulation. 1998; 98:1504–1509.
Article
9. Laurent S. Defining vascular aging and cardiovascular risk. J Hypertens. 2012; 30:Suppl. S3–S8.
Article
10. Collins JA, Munoz JV, Patel TR, Loukas M, Tubbs RS. The anatomy of the aging aorta. Clin Anat. 2014; 27:463–466.
Article
11. Cheuk BL, Cheng SW. Expression of integrin alpha5beta1 and the relationship to collagen and elastin content in human suprarenal and infrarenal aortas. Vasc Endovascular Surg. 2005; 39:245–251.
12. Aquaro GD, Cagnolo A, Tiwari KK, Todiere G, Bevilacqua S, Di Bella G, Ait-Ali L, Festa P, Glauber M, Lombardi M. Age-dependent changes in elastic properties of thoracic aorta evaluated by magnetic resonance in normal subjects. Interact Cardiovasc Thorac Surg. 2013; 17:674–679.
Article
13. Moore KL, Dalley AF, Agur AM. Clinically oriented anatomy. 7th ed. Philadelphia, PA: Wolters Kluwer Health/Lippincott Williams & Wilkins;2013.
14. Drake R, Vogl AW, Mitchell AW. Gray's anatomy for students. 2nd ed. Philadelphia, PA: Elsevier Health Sciences;2009.
15. Gartner LP, Hiatt JL. Color atlas and text of histology. 6th ed. Philadelphia, PA: Lippincott Williams & Wilkins;2013.
16. Telser AG, Young JK, Baldwin KM. Elsevier's integrated histology. Philadelphia, PA: Elsevier;2007.
17. Maleszewski JJ, Lai CK, Veinot JP. Anatomic considerations and examination of cardiovascular specimens (excluding devices). In : Buja LM, Butany J, editors. Cardiovasc Pathology. London: Elsevier Science;2015. p. 23–25.
18. Greenwald SE. Ageing of the conduit arteries. J Pathol. 2007; 211:157–172.
Article
19. da Silva ES, Rodrigues AJ Jr, Castro de Tolosa EM, Bueno Pereira PR, Zanoto A, Martins J. Variation of infrarenal aortic diameter: a necropsy study. J Vasc Surg. 1999; 29:920–927.
Article
20. Sawabe M, Hamamatsu A, Chida K, Mieno MN, Ozawa T. Age is a major pathobiological determinant of aortic dilatation: a large autopsy study of community deaths. J Atheroscler Thromb. 2011; 18:157–165.
Article
21. Fritze O, Romero B, Schleicher M, Jacob MP, Oh DY, Starcher B, Schenke-Layland K, Bujan J, Stock UA. Age-related changes in the elastic tissue of the human aorta. J Vasc Res. 2012; 49:77–86.
Article
22. Movat HZ, More RH, Haust MD. The diffuse intimal thickening of the human aorta with aging. Am J Pathol. 1958; 34:1023–1031.
23. Schlatmann TJ, Becker AE. Histologic changes in the normal aging aorta: implications for dissecting aortic aneurysm. Am J Cardiol. 1977; 39:13–20.
Article
24. Maurel E, Shuttleworth CA, Bouissou H. Interstitial collagens and ageing in human aorta. Virchows Arch A Pathol Anat Histopathol. 1987; 410:383–390.
Article
25. Yamada H, Sakata N, Wada H, Tashiro T, Tayama E. Age-related distensibility and histology of the ascending aorta in elderly patients with acute aortic dissection. J Biomech. 2015; 48:3267–3273.
Article
26. Alex RB, Amma LK. Microanatomical study of age changes in tunica media of ascending aorta. J Evol Med Dent Sci. 2016; 5:7409–7412.
27. Kumar V, Abbas AK, Aster JC. Robbins and Cotran pathologic basis of disease. 9th ed. Philadelphia, PA: Elsevier Health Sciences;2014.
28. Zarins CK, Glagov S. Artery wall pathology in atherosclerosis. In : Rutherford RB, editor. Vascular Surgery. Philadelphia, PA: WB Saunders;1989. p. 203–221.
29. Da Silva R. Anatomical study of the variation in the branching patterns and histology of the aorta in a South African population. Cape Town: University of Cape Town;2013.
30. Seki A, Fishbein MC. Cardiovascular pathology. 4th ed. Philadelphia, PA: Elsevier Science;2015.
31. Stary HC. Natural history and histological classification of atherosclerotic lesions: an update. Arterioscler Thromb Vasc Biol. 2000; 20:1177–1178.
32. Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W Jr, Rosenfeld ME, Schwartz CJ, Wagner WD, Wissler RW. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation. 1995; 92:1355–1374.
Full Text Links
  • ACB
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr