1. Ruff CB, Hayes WC. Cross-sectional geometry of Pecos Pueblo femora and tibiae-a biomechanical investigation: 1. Method and general patterns of variation. Am J Phys Anthropol. 1983; 60:359–81.
2. Ruff CB. Biomechanical analyses of archaeological human skeletons. Katzenberg MA, Saunders SR, editors. editors.Biolog-ical anthropology of the human skeleton. New York: Wiley;2000. p. 71–102.
Article
3. Fung YC. Biomechanics: mechanical Properties of Living Tissues. New York: Springer-Verlag;1993. p. 500–18.
4. Vuori I, Heinonen A, Sievanen H, Kannus P, Pasanen M, Oja P. Effects of unilateral strength training and detraining on bone mineral density and content in young women. Calcif Tissue Int. 1994; 55:59–67.
5. Püschel TA, Benítez HA. Femoral functional adaptation: a comparison between hunter gatherers and farmers using geometric morphometrics. Int J Morphol. 2014; 32:627–33.
Article
6. Lovejoy CO, Trinkaus E. Strength and robusticity of the Ne-anderthal tibia. Am J Phys Anthropol. 1980; 53:465–70.
7. Bridges PS, Blitz JH, Solano MC. Changes on long bone diaphyseal strength with horticultural intensification in west-central Illinois. Am J Phys Anthropol. 2000; 112:217–38.
8. Woo EJ, Jeong Y, Jung H, Pak S. Biomechanical properties of femoral diaphyseal cross-sectional shape from the Eunpyeong population. J Korean Phys Anthropol. 2014; 27:39–45. Korean.
Article
9. Kim S. A study on the social organization of the Yean-ni burial site. Yeungnam Archaeology. 2001; 29:43–70. Korean.
10. Seo MS, Lee KS. Genetic analysis of ancient human bones excavated in Sacheon Nuk-do and Gyeongsan Yim-dang-dong, Korea. Conserv Stud. 2004; 25:47–74. Korean.
11. Shin JY, Lee J-J. Tracing-status dietary differences in the Silla period through stable isotope palaeodietary reconstruction from Imdang, Gyeongsan. J Korean Archaeol Soc. 2009; 70:84–109. Korean.
12. Lee J, Ha D, Pak S, Woo EJ, Lee C, Kim D, et al. The relations of the dead: identifying the relationship of individuals buried at Imdang, Gyeongsan, through the analysis of mitochondrial DNA from human skeletal remains interred in large mounded tombs. J Korean Archaeol Soc. 2008; 68:128–55. Korean.
13. Jung S-S, Choi B-I. A study on the average lifespan of the tomb owner from Yimdang site, Gyeongsan and Yeanri stie, Gimhae. Field Archaeol. 2015; 22:27–52. Korean.
14. Buikstra JE, Ubelaker DH. Standards for data collection from human skeletal remains. Arkansas Archaeological Survey Research Series No. 44. Fayetteville;. 1994.
15. Moore-Jansen PM, Ousley SD, Jantz RL. Data collection procedures for forensic skeletal material. Report of Investigations No. 48. Knoxville: University of Tennessee;1994. p. 79–80.
16. Bass WM. Human osteology. Columbia: Missouri Archaeological Society;2005. p. 225.
17. Ruff CB, Larsen CS, Hayes WC. Structural changes in the femur with the transition to agriculture on the Georgia coast. Am J Phys Anthropol. 1984; 64:125–36.
Article
18. Tallman SD, Winburn AP. Forensic applicability of femur subtrochanteric shape to ancestry assessment in Thai and White American males. J Forensic Sci. 2015; 60:1283–9.
Article
19. Wescott DJ. Effect of mobility on femur midshaft external shape and robusticity. Am J Phys Anthropol. 2006; 130:201–13.
Article
20. Kimura T, Takahashi H. Mechanical properties of cross section of lower limb long bones in Jomon man. Anthropol Sci. 1982; 90:105–18.
Article
21. Wescott DJ. Population variation in femur subtrochanteric shape. J Forensic Sci. 2005; 50:286–93.
Article
22. Mcllvaine BK, Schepartz LA. Femoral subtrochanteric shape variation in Albania: implications for use in forensic applications. HOMO-J Comp Hum Biol. 2015; 66:79–89.
23. Yeungnam University Museum. 1982, Excavate the Imdang. 2012. p. 43. Korean.