1. Choi H, Park Y, Lee S, Ha H, Kim S, Cho HS, et al. A portable surgical navigation device to display resection planes for bone tumor surgery. Minim Invasive Ther Allied Technol. 2017; 26:144–150.
2. Choi H, Cho B, Masamune K, Hashizume M, Hong J. An effective visualization technique for depth perception in augmented reality-based surgical navigation. Int J Med Robot. 2016; 12:62–72.
3. Kim S, Hong J, Joung S, Yamada A, Matsumoto N, Kim SI, et al. Dual surgical navigation using augmented and virtual environment techniques. Int J Optomechatroni. 2011; 5:155–169.
4. Inoue D, Cho B, Mori M, Kikkawa Y, Amano T, Nakamizo A, et al. Preliminary study on the clinical application of augmented reality neuronavigation. J Neurol Surg A Cent Eur Neurosurg. 2013; 74:71–76.
5. Li L, Yang J, Chu Y, Wu W, Xue J, Liang P, et al. A novel augmented reality navigation system for endoscopic sinus and skull base surgery: a feasibility study. PLoS One. 2016; 11:e0146996.
6. Rosenthal M, State A, Lee J, Hirota G, Ackerman J, Keller K, et al. Augmented reality guidance for needle biopsies: an initial randomized, controlled trial in phantoms. Med Image Anal. 2002; 6:313–320.
7. Liao H, Hata N, Nakajima S, Iwahara M, Sakuma I, Dohi T. Surgical navigation by autostereoscopic image overlay of integral videography. IEEE Trans Inf Technol Biomed. 2004; 8:114–121.
8. Navab N, Heining SM, Traub J. Camera augmented mobile C-arm (CAMC): calibration, accuracy study, and clinical applications. IEEE Trans Med Imaging. 2010; 29:1412–1423.
9. Jeon S, Lee GW, Jeon YD, Park IH, Hong J, Kim JD. A preliminary study on surgical navigation for epiduroscopic laser neural decompression. Proc Inst Mech Eng H. 2015; 229:693–702.
10. Cho B, Oka M, Matsumoto N, Ouchida R, Hong J, Hashizume M. Warning nWarning navigation system using real-time safe region monitoring for otologic surgery. Int J Comput Assist Radiol Surg. 2013; 8:395–405.
11. Hong J, Hashizume M. An effective point-based registration tool for surgical navigation. Surg Endosc. 2010; 24:944–948.
12. Lee S, Kim JY, Hong J, Baek SH, Kim SY. CT-based navigation system using a patient-specific instrument for femoral component positioning: an experimental in vitro study with a sawbone model. Yonsei Med J. 2018; 59:769–780.
13. Oka M, Cho B, Matsumoto N, Hong J, Jinnouchi M, Ouchida R, et al. A preregistered STAMP method for image-guided temporal bone surgery. Int J Comput Assist Radiol Surg. 2014; 9:119–126.
14. Jeon S, Park J, Chien J, Hong J. A hybrid method to improve target registration accuracy in surgical navigation. Minim Invasive Ther Allied Technol. 2015; 24:356–363.
15. Hong J, Matsumoto N, Ouchida R, Komune S, Hashizume M. Medical navigation system for otologic surgery based on hybrid registration and virtual intraoperative computed tomography. IEEE Trans Biomed Eng. 2009; 56:426–432.
16. Lee S, Lee H, Choi H, Jeo S, Ha H, Hong J. Comparative study of hand-eye calibration methods for augmented reality using an endoscope. J Electron Imaging. 2018; 27:043017.
17. Lee S, Lee H, Choi H, Jeon S, Hong J. Effective calibration of an endoscope to an optical tracking system for medical augmented reality. Cogent Eng. 2017; 4:1359955.
18. Cho B, Oka M, Matsumoto N, Ouchida R, Hong J, Hashizume M. Warning navigation system using real-time safe region monitoring for otologic surgery. Int J Comput Assist Radiol Surg. 2013; 8:395–405.
19. Cho HS, Park YK, Gupta S, Yoon C, Han I, Kim HS, et al. Augmented reality in bone tumour resection: an experimental study. Bone Joint Res. 2017; 6:137–143.
20. Ha HG, Jeon S, Lee S, Choi H, Hong J. Perspective pinhole model with planar source for augmented reality surgical navigation based on C-arm imaging. Int J Comput Assist Radiol Surg. 2018; 13:1671–1682.