1. Borowiec S. AlphaGo seals 4-1 victory over Go grandmaster Lee Sedol. The Guardian. 2016. 03. 15.
2. Byford S. AlphaGo retires from competitive Go after defeating world number one 3-0. The Verge. 2017. 05. 27.
3. Fitzgerald J. IBM, NYC hospital training Watson supercomputer in cancer. Phys Org. 2012. 03. 22.
4. Granter SR, Beck AH, Papke DJ Jr. AlphaGo, Deep Learning, and the Future of the Human Microscopist. Arch Pathol Lab Med. 2017; 141:619–621.
Article
5. Sharma G, Carter A. Artificial Intelligence and the Pathologist: Future Frenemies? Arch Pathol Lab Med. 2017; 141:622–623.
Article
6. Granter SR, Beck AH, Papke DJ Jr. Straw Men, Deep Learning, and the Future of the Human Microscopist: Response to “Artificial Intelligence and the Pathologist: Future Frenemies”. Arch Pathol Lab Med. 2017; 141:624.
Article
7. Bloom KJ. Expert systems: robot physicians of the future. Hum Pathol. 1985; 16:1082–1084.
Article
8. Louis DN, Gerber GK, Baron JM, Bry L, Dighe AS, Getz G, et al. Computational Pathology. An Emerging Definition. Arch Pathol Lab Med. 2014; 138:1133–1138.
Article
9. Castellino RA. Computer aided detection (CAD): an overview. Cancer Imaging. 2005; 5:17–19.
Article
10. Song SY. Artificial Intelligence in Pathology. In : The 25th federation meeting of Korean basic medical scientists 2017; 2017. p. S33.
11. Cucoranu IC, Parwani AV, Vepa S, Weinstein RS, Pantanowitz L. Digital pathology: A systematic evaluation of the patent landscape. J Pathol Inform. 2014; 5(1):16.
Article
12. Dunn BE, Almagro UA, Choi H, Sheth NK, Arnold JS, Recla DL, et al. Dynamic-robotic telepathology: Department of Veterans Affairs feasibility study. Hum Pathol. 1997; 28:8–12.
Article
13. Ferreirat R, Moon B, Humphriest J, Sussman A, Saltz J, Miller R, et al. The Virtual Microscope. Proc AMIA Annu Fall Symp. 1997; 449–453.
14. Rojo MG, García GB, Mateos CP, García JG, Vicente MC. Critical comparison of 31 commercially available digital slide systems in pathology. Int J Surg Pathol. 2006; 14:285–305.
Article
15. Farahani N, Parwani AV, Pantanowitz L. Whole slide imaging in pathology: advantages, limitations, and emerging perspectives. Pathol Lab Med Int. 2015; 7:23–33.
16. Baidoshvili A. Making the Move to 100 Percent Digital. Pathologist. 2015; 502–503.
17. Randell R, Ruddle RA, Mello-Thoms C, Thomas RG, Quirke P, Treanor D. Virtual reality microscope versus conventional microscope regarding time to diagnosis: An experimental study. Histopathology. 2013; 62:351–358.
Article
18. Park S, Pantanowitz L, Parwani AV. Digital imaging in pathology. Clin Lab Med. 2012; 32:557–584.
Article
19. Bhattacharyya S. A brief survey of color image preprocessing and segmentation techniques. J Pattern Recognit Res. 2011; 6:120–129.
Article
20. Khan AM, Rajpoot N, Treanor D, Magee D. A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution. IEEE Trans Biomed Eng. 2014; 61:1729–1738.
Article
21. He L, Long LR, Antani S, Thoma GR. Histology image analysis for carcinoma detection and grading. Comput Methods Programs Biomed. 2012; 107:538–556.
Article
22. Chen JM, Li Y, Xu J, Gong L, Wang LW, Liu WL, Liu J. Computer-aided prognosis on breast cancer with hematoxylin and eosin histopathology images: A review. Tumour Biol. 2017; 39:1010428317694550.
Article
23. Parvin B, Yang Q, Han J, Chang H, Rydberg B, Barcellos-Hoff MH. Iterative voting for inference of structural saliency and characterization of subcellular events. IEEE Trans Image Process. 2007; 16:615–623.
Article
24. Al-Kofahi Y, Lassoued W, Lee W, Roysam B. Improved automatic detection and segmentation of cell nuclei in histopathology images. IEEE Trans Biomed Eng. 2010; 57:841–852.
Article
25. Arteta C, Lempitsky V, Noble JA, Zisserman A. Learning to detect cells using non-overlapping extremal regions. Med Image Comput Comput Assist Interv. 2012; 15:348–356.
Article
26. Yan C, Li A, Zhang B, Ding W, Luo Q, Gong H. Automated and accurate detection of soma location and surface morphology in large-scale 3D neuron images. PLoS One. 2013; 8:e62579.
Article
27. Esmaeilsabzali H, Sakaki K, Dechev N, Burke RD, Park EJ. Machine vision-based localization of nucleic and cytoplasmic injection sites on low-contrast adherent cells. Med Biol Eng Comput. 2012; 50:11–21.
Article
28. Jung C. Segmenting clustered nuclei using H-minima transform-based marker extraction and contour parameterization. IEEE Trans Biomed Eng. 2010; 57:2600–2604.
Article
29. Li F, Zhou X, Ma J, Wong ST. Multiple nuclei tracking using integer programming for quantitative cancer cell cycle analysis. IEEE Trans Med Imaging. 2010; 29:96–105.
Article
30. Ali S. An integrated region-, boundary-, shapebased active contour for multiple object overlap resolution in histological imagery. IEEE Trans Med Imaging. 2012; 31:1448–1460.
Article
31. Cheng JR. Segmentation of clustered nuclei with shape markers and marking function. IEEE Trans Biomed Eng. 2009; 56:741–748.
Article
32. Basavanhally AN, Ganesan S, Agner S, Monaco JP, Feldman MD, Tomaszewski JE, et al. Computerized image-based detection and grading of lymphocytic infiltration in her2+ breast cancer histopathology. IEEE Trans Biomed Eng. 2010; 57:642–653.
Article
33. Fatakdawala H, Xu J, Basavanhally A, Bhanot G, Ganesan S, Feldman M, et al. Expectation-maximization-driven geodesic active contour with overlap resolution (EMaGACOR): application to lymphocyte segmentation on breast cancer histopathology. IEEE Trans Biomed Eng. 2010; 57:1676–1689.
Article
34. Vink JP, Van Leeuwen MB, Van Deurzen CH, De Haan G. Efficient nucleus detector in histopathology images. J Microsc. 2013; 249:124–135.
Article
35. Xu J, Xiang L, Liu Q, Gilmore H, Wu J, Tang J, Madabhushi A. Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Trans Med Imaging. 2016; 35:119–130.
Article
36. Hoque A, Lippman SM, Boiko IV, Atkinson EN, Sneige N, Sahin A, et al. Quantitative nuclear morphometry by image analysis for prediction of recurrence of ductal carcinoma in situ of the breast. Cancer Epidemiol Biomarkers Prev. 2001; 10:249–259.
37. Qi X, Xing F, Foran DJ, Yang L. Robust segmentation of overlapping cells in histopathology specimens using parallel seed detection and repulsive level set. IEEE Trans Biomed Eng. 2012; 59:754–765.
Article
38. Latson L, Sebek B, Powell KA. Automated cell nuclear segmentation in color images of hematoxylin and eosin-stained breast biopsy. Anal Quant Cytol Histol. 2003; 25:321–331.
39. Veta M, Kornegoor R, Huisman A, Verschuur-Maes AH, Viergever MA, Pluim JP, van Diest PJ. Prognostic value of automatically extracted nuclear morphometric features in whole slide images of male breast cancer. Mod Pathol. 2012; 25:1559–1565.
Article
40. Mouelhi A, Sayadi M, Fnaiech F. A supervised segmentation scheme based on multilayer neural network and color active contour model for breast cancer nuclei detection. In : 2013 international conference on electrical engineering and software applications (ICEESA); 21–23 March; Hammamet, Tunisia. New York: IEEE;2013. 53:p. 1–6.
41. Naik S, Doyle S, Agner S, Madabhushi A, Feldman M, Tomaszewski J. Automated gland and nuclei segmentation for grading of prostate and breast cancer histopathology. In : 5th IEEE international symposium on biomedical imaging: from nano to macro; 14–17 May; Paris, France. New York: IEEE;2008. p. 284–287.
42. Basavanhally A, Ganesan S, Feldman M, Shih N, Mies C, Tomaszewski J, et al. Multifield-of-view framework for distinguishing tumor grade in ER+ breast cancer from entire histopathology slides. IEEE Trans Biomed Eng. 2013; 60(8):2089–2099.
Article
43. Mendelsohn ML, Kolman WA, Perry B, Prewitt JM. Morphological analysis of cells and chromosomes by digital computer. Methods Inf Med. 1965; 4:163–167.
Article
44. Wilbur DC, Prey MU, Miller WM, Pawlick GF, Colgan TJ. The AutoPap system for primary screening in cervical cytology. Comparing the results of a prospective, intended-use study with routine manual practice. Acta Cytol. 1998; 42:214–220.
45. Dawson AE. Can We Change the Way We Screen?: The ThinPrep Imaging System. Cancer. 2004; 102:340–344.
Article
46. Mungle T, Tewary S, DAS DK, Arun I, Basak B, Agarwal S, et al. MRF-ANN: a machine learning approach for automated ER scoring of breast cancer immunohistochemical images. J Microsc. 2017; 267:117–129.
Article
47. Tuominen VJ, Ruotoistenmäki S, Viitanen A, Jumppanen M, Isola J. ImmunoRatio: a publicly available web application for quantitative image analysis of estrogen receptor (ER), progesterone receptor (PR), and Ki-67. Breast Cancer Res. 2010; 12:R56.
Article
48. Albarqouni S, Baur C, Achilles F, Belagiannis V, Demirci S, Navab N. AggNet: Deep Learning From Crowds for Mitosis Detection in Breast Cancer Histology Images. IEEE Trans Med Imaging. 2016; 35:1313–1321.
Article
49. Cireşan DC, Giusti A, Gambardella LM, Schmidhuber J. Mitosis Detection in Breast Cancer Histology Images with Deep Neural Networks. Med Image Comput Comput Assist Interv. 2013; 16:411–418.
Article
50. Veta M, van Diest PJ, Willems SM, Wang H, Madabhushi A, Cruz-Roa A, et al. Assessment of algorithms for mitosis detection in breast cancer histopathology images. Med Image Anal. 2015; 20:237–248.
Article
51. Wang H, Cruz-Roa A, Basavanhally A, Gilmore H, Shih N, Feldman M, et al. Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features. J Med Imaging (Bellingham). 2014; 1:034003.
Article
52. Malon CD, Cosatto E. Classification of mitotic figures with convolutional neural networks and seeded blob features. J Pathol Inform. 2013; 4:9.
Article
53. Ali HR, Dariush A, Provenzano E, Bardwell H, Abraham JE, Iddawela M, et al. Computational pathology of pre-treatment biopsies identifies lymphocyte density as a predictor of response to neoadjuvant chemotherapy in breast cancer. Breast Cancer Res. 2016; 18:21.
Article
54. Turkki R, Linder N, Kovanen PE, Pellinen T, Lundin J. Antibody-supervised deep learning for quantification of tumor-infiltrating immune cells in hematoxylin and eosin stained breast cancer samples. J Pathol Inform. 2016; 7:38.
Article
55. Yuan Y. Modelling the spatial heterogeneity and molecular correlates of lymphocytic infiltration in triple-negative breast cancer. J R Soc Interface. 2015; 12:20141153.
Article
56. Roux L, Racoceanu D, Loménie N, Kulikova M, Irshad H, Klossa J, et al. Mitosis detection in breast cancer histological images an ICPR 2012 contest. J Pathol Inform. 2013; 4:8.
Article
57. Giusti A, Cacciay C, Ciresan DC, Schmidhuber J, Gambardella LM. A comparison of algorithms and humans for mitosis detection. In : 2014 IEEE 11th international symposium on biomed imaging (ISBI); 29 April–2 May; Beijing, China. New York: IEEE;2014. p. 1360–1363.