J Dent Rehabil Appl Sci.  2018 Jun;34(2):72-79. 10.14368/jdras.2018.34.2.72.

Influence of water absorption on flexural strength and elastic modulus in several resinous teeth splinting materials

Affiliations
  • 1Department of Conservative Dentistry, College of Dentistry, Gangneung-Wonju National University School of Dentistry, Gangneung, Republic of Korea. drbozon@gwnu.ac.kr

Abstract

PURPOSE
The purpose of this study was to compare flexural strength and elastic modulus of several splinting materials dependent on water absorption.
MATERIALS AND METHODS
Three different materials; LightFix, G-FIX, G-aenial Universal Flo; were used in this study. Thirty rectangular bar specimens (25 × 2 × 2 mm) of each materials were prepared. Fifteen specimens of each materials were stored in 100% relative humidity atmosphere, 37℃ for 24 hours. The other specimens were stored in distilled water, 37℃ for 30 days. Flexural strength and elastic modulus were calculated using Universal testing machine. One-way ANOVA and Scheffe's post hoc test at 95% level of significance were used on all test results.
RESULTS
In LightFix, flexural strength and elastic modulus were significantly decreased after aging. In G-FIX, there was no significant change in flexural strength and elastic modulus after aging. In Gaenial Universal Flo, flexural strength was significantly decreased, but elastic modulus did not change significantly. Statistical analysis reveals that flexural strength and elastic modulus increased in the order of LightFix, G-FIX, G-aenial Flo in both 24 hours and 30 days.
CONCLUSION
It could be deduced from this study that flexural strength and elastic modulus of some resins could be changed when it aged in oral environment. Thus this should be considered when choosing a resin to perform a resin-bonded splint.

Keyword

aging; elastic modulus; flexural strength; splint; tooth mobility

MeSH Terms

Absorption*
Aging
Atmosphere
Elastic Modulus*
Humidity
Splints*
Tooth Mobility
Tooth*
Water*
Water

Figure

  • Fig. 1 Schematic drawing of specimen.

  • Fig. 2 Result of flexural strength (Scheffe’s test). *: Significant differences were detected (P < 0.05) in each materials.

  • Fig. 3 Result of elastic modulus (Scheffe’s test). *: Significant differences were detected (P < 0.05) in each materials.


Reference

References

1. Zhang Y, Xu J. Effect of immersion in various media on the sorption, solubility, elution of unreacted monomers, and flexural properties of two model dental composite compositions. J Mater Sci Mater Med. 2008; 19:2477–83. DOI: 10.1007/s10856-008-3369-6. PMID: 18253815.
2. Sideridou ID, Achilias DS. Elution study of unreacted Bis-GMA, TEGDMA, UDMA, and Bis-EMA from light-cured dental resins and resin composites using HPLC. J Biomed Mater Res B Appl Biomater. 2005; 74:617–26. DOI: 10.1002/jbm.b.30252. PMID: 15889433.
3. Yoo JI, Kim SY, Batbayar B, Kim JW, Park SH, Cho KM. Comparison of flexural strength and modulus of elasticity in several resinous teeth splinting materials. J Dent Rehabil Appl Sci. 2016; 32:169–75. DOI: 10.14368/jdras.2016.32.3.169.
4. Mazzoleni S, Meschia G, Cortesi R, Bressan E, Tomasi C, Ferro R, Stellini E. In vitro comparison of the flexibility of different splint systems used in dental traumatology. Dent Traumatol. 2010; 26:30–6. DOI: 10.1111/j.1600-9657.2009.00843.x. PMID: 20089059.
5. Zhou M, Drummond JL, Hanley L. Barium and strontium leaching from aged glass particle/resin matrix dental composites. Dent Mater. 2005; 21:145–55. DOI: 10.1016/j.dental.2004.02.009. PMID: 15681013.
6. Drummond JL. Cyclic fatigue of composite restorative materials. J Oral Rehabil. 1989; 16:509–20. DOI: 10.1111/j.1365-2842.1989.tb01372.x. PMID: 2809853.
7. Drummond JL, Khalaf MA, Randolph RG. In vitro ageing of composite restorative materials. Clin Mater. 1988; 3:209–21. DOI: 10.1016/0267-6605(88)90058-3.
8. Wu W, McKinney JE. Influence of chemicals on wear of dental composites. J Dent Res. 1982; 61:1180–3. DOI: 10.1177/00220345820610101501. PMID: 6214572.
9. Truong VT, Tyas MJ. Prediction of in vivo wear in posterior composite resins:a fracture mechanics approach. Dent Mater. 1988; 4:318–27. DOI: 10.1016/S0109-5641(88)80044-7. PMID: 3271706.
10. Toledano M, Osorio R, Osorio E, Aguilera FS, Remeo A, de la Higuera B, García-Godoy F. Sorption and solubility testing of orthodontic bonding cements in different solutions. J Biomed Mater Res B Appl Biomater. 2006; 76:251–6. DOI: 10.1002/jbm.b.30399. PMID: 16193485.
11. Sideridou I, Tserki V, Papanastasiou G. Study of water sorption, solubility and modulus of elasticity of light-cured dimethacrylate-based dental resins. Biomaterials. 2003; 24:655–65. DOI: 10.1016/S0142-9612(02)00380-0. PMID: 12437960.
12. Asaoka K, Hirano S. Diffusion coefficient of water through dental composite resin. Biomaterials. 2003; 24:975–9. DOI: 10.1016/S0142-9612(02)00435-0. PMID: 12504519.
13. Toledano M, Osorio R, Osorio E, Fuentes V, Prati C, García-Godoy F. Sorption and solubility of resin-based restorative dental materials. J Dent. 2003; 31:43–50. DOI: 10.1016/S0300-5712(02)00083-0. PMID: 12615019.
14. Da Fonte Porto Carreiro A, Dos Santos Cruz C, Vergani CE. Hardness and compressive strength of indirect composite resins:effects of immersion in distilled water. J Oral Rehabil. 2004; 31:1085–9. DOI: 10.1111/j.1365-2842.2004.01147.x. PMID: 15525387.
15. International Organization for Standardization. Dentistry-Polymer-based restorative material ISO:4049-2009.
16. de Melo Monteiro GQ, Montes MA. Evaluation of linear polymerization shrinkage, flexural strength and modulus of elasticity of dental composites. Mat Res. 2010; 13:51–5. DOI: 10.1590/S1516-14392010000100012.
17. Hofmann N, Papsthart G, Hugo B, Klaiber B. Comparison of photo-activation versus chemical or dual-curing of resin-based luting cements regarding flexural strength, modulus and surface hardness. J Oral Rehabil. 2001; 28:1022–8. DOI: 10.1111/j.1365-2842.2001.00809.x. PMID: 11722718.
18. Oysaed H, Ruyter IE. Composites for use in posterior teeth:mechanical properties tested under dry and wet conditions. J Biomed Mater Res. 1986; 20:261–71. DOI: 10.1002/jbm.820200214. PMID: 3957963.
19. Dickens SH, Stansbury JW, Choi KM, Floyd CJE. Photopolymerization kinetics of methacrylate dental resins. Macromolecules. 2003; 36:6043–53. DOI: 10.1021/ma021675k.
20. Rueggeberg FA. From vulcanite to vinyl, a history of resins in restorative dentistry. J Prosthet Dent. 2002; 87:364–79. DOI: 10.1067/mpr.2002.123400. PMID: 12011846.
21. Atai M, Watts DC. A new kinetic model for the photopolymerization shrinkage-strain of dental composites and resin-monomers. Dent Mater. 2006; 22:785–91. DOI: 10.1016/j.dental.2006.02.009. PMID: 16540163.
22. Floyd CJ, Dickens SH. Network structure of Bis-GMA-and UDMA-based resin systems. Dent Mater. 2006; 22:1143–9. DOI: 10.1016/j.dental.2005.10.009. PMID: 16376422.
23. Dewaele M, Truffier-Boutry D, Devaux J, Leloup G. Volume contraction in photocured dental resins:the shrinkage-conversion relationship revisited. Dent Mater. 2006; 22:359–65. DOI: 10.1016/j.dental.2005.03.014. PMID: 16143380.
24. Gonçalves F, Kawano Y, Pfeifer C, Stansbury JW, Braga RR. Influence of BisGMA, TEGDMA, and BisEMA contents on viscosity, conversion, and flexural strength of experimental resins and composites. Eur J Oral Sci. 2009; 117:442–6. DOI: 10.1111/j.1600-0722.2009.00636.x. PMID: 19627357.
25. Cook WD, Moopnar M. Influence of chemical structure on the fracture behaviour of dimethacrylate composite resins. Biomaterials. 1990; 11:272–6. DOI: 10.1016/0142-9612(90)90009-F. PMID: 2383623.
26. Cekic-Nagas I, Egilmez F, Ergun G, Vallittu PK, Lassila LVJ. Load-bearing capacity of novel resinbased fixed dental prosthesis materials. Dent Mater J. 2018; 37:49–58. DOI: 10.4012/dmj.2016-367. PMID: 29081445.
27. Drummond JL, Andronova K, Al-Turki LI, Slaughter LD. Leaching and mechanical properties characterization of dental composites. J Biomed Mater Res B Appl Biomater. 2004; 71:172–80. DOI: 10.1002/jbm.b.30074. PMID: 15368242.
28. Geurtsen W. Substances released from dental resin composites and glass ionomer cements. Eur J Oral Sci. 1998; 106:687–95. DOI: 10.1046/j.0909-8836.1998.eos10602ii04.x. PMID: 9584902.
29. Ferracane JL. Elution of leachable components from composites. J Oral Rehabil. 1994; 21:441–52. DOI: 10.1111/j.1365-2842.1994.tb01158.x. PMID: 7965355.
30. Moszner N, Salz U. New developments of polymeric dental composites. Prog Polym Sci. 2001; 26:535–76. DOI: 10.1016/S0079-6700(01)00005-3.
Full Text Links
  • JDRAS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr