Nat Prod Sci.  2018 Sep;24(3):159-163. 10.20307/nps.2018.24.3.159.

Chinoketides A and B, Two New Antimicrobial Polyketides from the Endophytes of Distylium chinense with the “Black-Box” Co-culture Method

Affiliations
  • 1Hubei Key Laboratory of Natural Product Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, People's of Republic China. zhyguoctgu@foxmail.com
  • 2Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universitat Dusseldorf, Universitatsstrasse 1, 40225 Dusseldorf, Germany.

Abstract

Two new polyketides, chinoketides A and B (1 - 2) with a known compound xylarphthalide A (3), were isolated from the solid medium of the endophytes from the leaves of the relic plant Distylium chinense with the "black-box" co-culture method, and the structures of two new compounds were elucidated by NMR, MS and CD spectra. And the absolute configurations of chinoketides A (1) and B (2) were determined as 2R,3R,8S and 5R,6S by calculating their ECD spectra to compare with the experimental CD spectra. Finally, the antimicrobial activities were evaluated to Erwinia carotovora sub sp. Carotovora (Jones) Bersey et al, and the results showed that compounds 1 - 3 displayed the antimicrobial activities with MIC value at 20.5, 30.4 and 10.2 µg/mL.

Keyword

Polyketides; “black-box” Co-culture; Distylium chinense; Antimicrobial activity; Structural elucidation

MeSH Terms

Coculture Techniques*
Endophytes*
Methods*
Pectobacterium carotovorum
Plants
Polyketides*
Polyketides

Figure

  • Fig. 1 The structures of compounds 1 – 3.

  • Fig. 2 The key HMBC, NOESY and COSY correlations of compounds 1 – 2.

  • Fig. 3 The calculated ECD and experimental CD spectra of compound 1.

  • Fig. 4 The calculated ECD and experimental CD spectra of compound 2.


Reference

1. Stierle A, Strobel G, Strierle D. Science. 1993; 260:214–216.
2. Brady SF, Singh MP, Janso JE, Clardy J. Org Lett. 2000; 2:4047–4049.
3. Kontnik R, Clardy J. Org Lett. 2008; 10:4149–4151.
4. Li J, Li L, Si Y, Jiang X, Guo L, Che Y. Org Lett. 2011; 13:2670–2673.
5. Huang X, Huang H, Li H, Sun X, Huang H, Lu Y, Lin Y, Long Y, She Z. Org Lett. 2013; 15:721–723.
6. Xiao Z, Huang H, Shao C, Xia X, Ma L, Huang X, Lu Y, Lin Y, Long Y, She Z. Org Lett. 2013; 15:2522–2525.
7. Zhou M, Miao MM, Du G, Li XN, Shang SZ, Zhao W, Liu ZH, Yang GY, Che CT, Hu QF, Gao XM. Org Lett. 2014; 16:5016–5019.
8. Zhang P, Mándi A, Li XM, Du FY, Wang JN, Li X, Kurtán T, Wang BG. Org Lett. 2014; 16:4834–4837.
9. Marmann A, Aly AH, Lin W, Wang B, Proksch P. Mar Drugs. 2014; 12:1043–1065.
10. Arnold AE, Carson WP, Schnitzer SA. West Sussex. UK: Wiley-Blackwell;2008. p. 254–255.
11. Guo Z, Li X, Zhang L, Feng Z, Deng Z, He H, Zou K. Nat Prod Res. 2016; 30:2582–2589.
12. Feng ZW, Lv MM, Li XS, Zhang L, Liu CX, Guo ZY, Deng ZS, Zou K, Proksch P. Molecules. 2016; 21:1438–1446.
13. Wan Q, Feng Z, Li X, Lv M, Guo Z, Deng Z, Zou K. Z Naturforsch B. 2016; 71:283–286.
14. Zhang L, Liu Y, Deng Z, Guo Z, Chen J, Tu X, Zou K. Nat Prod Commun. 2013; 8:83–84.
15. Bruhn T, Schaumlöffel A, Hemberger Y, Bringmann G. Chirality. 2013; 25:243–249.
16. Sheldrick GM. Shelxl-97, Program for the Refinements of Crystal Structure. Germany: University of Göttingen;1997.
17. Yakushiji F, Miyamoto Y, Kunoh Y, Okamoto R, Nakaminami H, Yamazaki Y, Noguchi N, Hayashi Y. ACS Med Chem Lett. 2013; 4:220–224.
18. Zheng N, Yao F, Liang X, Liu Q, Xu W, Liang Y, Liu X, Li J, Yang R. Nat Prod Res. 2018; 32:755–760.
Full Text Links
  • NPS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr