1. Braddom RL, Chan L, Harrast MA, Kowalske KJ, Matthews DJ, Ragnarsson KT, et al. Physical medicine and rehabilitation. 4th ed. Philadelphia: Elsevier Health Sciences;2010.
2. Fletcher DD, Andrews KL, Hallett JW Jr, Butters MA, Rowland CM, Jacobsen SJ. Trends in rehabilitation after amputation for geriatric patients with vascular disease: implications for future health resource allocation. Arch Phys Med Rehabil. 2002; 83:1389–93.
Article
3. Dillingham TR, Pezzin LE, MacKenzie EJ. Limb amputation and limb deficiency: epidemiology and recent trends in the United States. South Med J. 2002; 95:875–83.
Article
4. Varma P, Stineman MG, Dillingham TR. Epidemiology of limb loss. Phys Med Rehabil Clin N Am. 2014; 25:1–8.
Article
5. Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch Phys Med Rehabil. 2008; 89:422–9.
Article
6. Kim SH, Beon YC, Son CK, Lee YH, Lee MK, Lee SH, et al. A survey study on prevalence and condition of the disabled in the Korea. Sejong: Ministry of Health and Welfare;2011.
7. Paradisi F, Delussu AS, Brunelli S, Iosa M, Pellegrini R, Zenardi D, et al. The conventional non-articulated SACH or a multiaxial prosthetic foot for hypomobile transtibial amputees? A clinical comparison on mobility, balance, and quality of life. ScientificWorld-Journal. 2015; 2015:261801.
Article
8. Ehara Y, Beppu M, Nomura S, Kunimi Y, Takahashi S. Energy storing property of so-called energy-storing prosthetic feet. Arch Phys Med Rehabil. 1993; 74:68–72.
9. Hafner BJ, Sanders JE, Czerniecki J, Fergason J. Energy storage and return prostheses: does patient perception correlate with biomechanical analysis? Clin Biomech (Bristol, Avon). 2002; 17:325–44.
Article
10. Zmitrewicz RJ, Neptune RR, Sasaki K. Mechanical energetic contributions from individual muscles and elastic prosthetic feet during symmetric unilateral transtibial amputee walking: a theoretical study. J Biomech. 2007; 40:1824–31.
Article
11. Agrawal V, Gailey R, O’Toole C, Gaunaurd I, Finnieston A. Influence of gait training and prosthetic foot category on external work symmetry during unilateral transtibial amputee gait. Prosthet Orthot Int. 2013; 37:396–403.
Article
12. Wezenberg D, Cutti AG, Bruno A, Houdijk H. Differentiation between solid-ankle cushioned heel and energy storage and return prosthetic foot based on step-tostep transition cost. J Rehabil Res Dev. 2014; 51:1579–90.
Article
13. Fey NP, Klute GK, Neptune RR. The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees. Clin Biomech (Bristol, Avon). 2011; 26:1025–32.
Article
14. Rigney SM, Simmons A, Kark L. Mechanical characterization and comparison of energy storage and return prostheses. Med Eng Phys. 2017; 41:90–6.
Article
15. Gailey RS, Roach KE, Applegate EB, Cho B, Cunniffe B, Licht S, et al. The amputee mobility predictor: an instrument to assess determinants of the lower-limb amputee’s ability to ambulate. Arch Phys Med Rehabil. 2002; 83:613–27.
Article
16. Fey NP, Silverman AK, Neptune RR. The influence of increasing steady-state walking speed on muscle activity in below-knee amputees. J Electromyogr Kinesiol. 2010; 20:155–61.
Article
17. Silverman AK, Fey NP, Portillo A, Walden JG, Bosker G, Neptune RR. Compensatory mechanisms in belowknee amputee gait in response to increasing steadystate walking speeds. Gait Posture. 2008; 28:602–9.
Article
18. Neptune RR, Kautz SA, Zajac FE. Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. J Biomech. 2001; 34:1387–98.
Article
19. Hafner BJ, Sanders JE, Czerniecki JM, Fergason J. Transtibial energy-storage-and-return prosthetic devices: a review of energy concepts and a proposed nomenclature. J Rehabil Res Dev. 2002; 39:1–11.
20. Graham LE, Datta D, Heller B, Howitt J. A comparative study of oxygen consumption for conventional and energy-storing prosthetic feet in transfemoral amputees. Clin Rehabil. 2008; 22:896–901.
Article
21. Graham LE, Datta D, Heller B, Howitt J, Pros D. A comparative study of conventional and energy-storing prosthetic feet in high-functioning transfemoral amputees. Arch Phys Med Rehabil. 2007; 88:801–6.
Article
22. Svoboda Z, Janura M, Cabell L, Elfmark M. Variability of kinetic variables during gait in unilateral transtibial amputees. Prosthet Orthot Int. 2012; 36:225–30.
Article
23. Perry J, Burnfield JM. Gait analysis: normal and pathological function. 2nd ed. Thorofare: Slack Inc;2010.
24. Castro MP, Soares D, Mendes E, Machado L. Plantar pressures and ground reaction forces during walking of individuals with unilateral transfemoral amputation. PM R. 2014; 6:698–707.
Article
25. Gitter A, Czerniecki JM, DeGroot DM. Biomechanical analysis of the influence of prosthetic feet on below-knee amputee walking. Am J Phys Med Rehabil. 1991; 70:142–8.
Article
26. Schneider K, Hart T, Zernicke RF, Setoguchi Y, Oppenheim W. Dynamics of below-knee child amputee gait: SACH foot versus Flex foot. J Biomech. 1993; 26:1191–204.
Article
27. Torburn L, Perry J, Ayyappa E, Shanfield SL. Belowknee amputee gait with dynamic elastic response prosthetic feet : a pilot study. J Rehabil Res Dev. 1990; 27:369–84.
28. Colborne GR, Naumann S, Longmuir PE, Berbrayer D. Analysis of mechanical and metabolic factors in the gait of congenital below knee amputees: a comparison of the SACH and Seattle feet. Am J Phys Med Rehabil. 1992; 71:272–8.