J Bone Metab.  2018 May;25(2):73-78. 10.11005/jbm.2018.25.2.73.

Clinical Utility of Biochemical Marker of Bone Turnover: Fracture Risk Prediction and Bone Healing

Affiliations
  • 1Department of Orthopaedic Surgery, Seoul Paik Hospital, Inje University College of Medicine, Seoul, Korea. cragy0215@naver.com

Abstract

Bone turnover markers (BTMs) are released during bone remodeling and are thought to reflect the metabolic activity of bone at the cellular level. This review examines BTM as a biological response marker for monitoring future fracture prediction and fracture healing processes. Substantial evidence has been of high value to investigate the use of BTM in fracture risk prediction; nevertheless, the conclusions of some studies are inconsistent due to their large variability. BTM is promising for fracture risk prediction for adopting international reference standards or providing absolute risks, such as 10-year fracture probabilities. There are uncertainties over their clinical use for monitoring osteoporotic fracture healing. More rigorous evidence is needed that can provide more detailed insights for fracture healing and for ascertaining the progression of fracture healing.

Keyword

Biomarkers; Bone remodeling; Fractures bone; Fracture healing; Osteoporosis

MeSH Terms

Biomarkers*
Bone Remodeling*
Fracture Healing
Osteoporosis
Osteoporotic Fractures
Biomarkers

Cited by  3 articles

Age-related Reference Intervals for Total Collagen-I-N-terminal Propeptide in Healthy Korean Population
Jun-Il Yoo, Ae-Ja Park, Yong Kwan Lim, Oh Joo Kweon, Jee-Hye Choi, Jae Hyuk Do, Sunjoo Kim, Youngri Kim, Yong-Chan Ha
J Bone Metab. 2018;25(4):235-241.    doi: 10.11005/jbm.2018.25.4.235.

Potential Biomarkers to Improve the Prediction of Osteoporotic Fractures
Beom-Jun Kim, Seung Hun Lee, Jung-Min Koh
Endocrinol Metab. 2020;35(1):55-63.    doi: 10.3803/EnM.2020.35.1.55.

Reference Intervals for Bone Turnover Markers in Korean Healthy Women
Dong Hyeok Cho, Jin Ook Chung, Min Young Chung, Jeong-Ran Cho, Dong Jin Chung
J Bone Metab. 2020;27(1):43-52.    doi: 10.11005/jbm.2020.27.1.43.


Reference

1. Yi H, Ha YC, Lee YK, et al. National healthcare budget impact analysis of the treatment for osteoporosis and fractures in Korea. J Bone Metab. 2013; 20:17–23. PMID: 24524051.
Article
2. Giangregorio LM, Leslie WD, Lix LM, et al. FRAX underestimates fracture risk in patients with diabetes. J Bone Miner Res. 2012; 27:301–308. PMID: 22052532.
Article
3. Kim JW, Ha YC, Lee YK. Factors affecting bone mineral density measurement after fracture in South Korea. J Bone Metab. 2017; 24:217–222. PMID: 29259960.
Article
4. Almansouri AY, Abdulfatah ME, Baaqil OH, et al. Serum sclerostin levels in patients with human immunodeficiency virus infection and their association with bone turnover markers and bone mineral densitometry. J Bone Metab. 2016; 23:16–22. PMID: 26981516.
Article
5. Garnero P, Hausherr E, Chapuy MC, et al. Markers of bone resorption predict hip fracture in elderly women: the EPIDOS Prospective Study. J Bone Miner Res. 1996; 11:1531–1538. PMID: 8889854.
Article
6. Ohishi T, Takahashi M, Kushida K, et al. Changes of biochemical markers during fracture healing. Arch Orthop Trauma Surg. 1998; 118:126–130. PMID: 9932185.
Article
7. Emami A, Larsson A, Petrén-Mallmin M, et al. Serum bone markers after intramedullary fixed tibial fractures. Clin Orthop Relat Res. 1999; 220–229.
Article
8. Marcus R, Holloway L, Wells B, et al. The relationship of biochemical markers of bone turnover to bone density changes in postmenopausal women: results from the Postmenopausal Estrogen/Progestin Interventions (PEPI) trial. J Bone Miner Res. 1999; 14:1583–1595. PMID: 10469288.
Article
9. Leiper JM, Paterson KR, Lunan CB, et al. A comparison of biosynthetic human insulin with porcine insulin in the blood glucose control of diabetic pregnancy. Diabet Med. 1986; 3:49–51. PMID: 2951136.
Article
10. Kanis JA, Johnell O, Oden A, et al. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int. 2008; 19:385–397. PMID: 18292978.
Article
11. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996; 312:1254–1259. PMID: 8634613.
Article
12. Schuit SC, van der Klift M, Weel AE, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone. 2004; 34:195–202. PMID: 14751578.
Article
13. Wang J, Zhou B, Parkinson I, et al. Trabecular plate loss and deteriorating elastic modulus of femoral trabecular bone in intertrochanteric hip fractures. Bone Res. 2013; 1:346–354. PMID: 26273512.
Article
14. Bala Y, Zebaze R, Ghasem-Zadeh A, et al. Cortical porosity identifies women with osteopenia at increased risk for forearm fractures. J Bone Miner Res. 2014; 29:1356–1362. PMID: 24519558.
Article
15. Stein EM, Kepley A, Walker M, et al. Skeletal structure in postmenopausal women with osteopenia and fractures is characterized by abnormal trabecular plates and cortical thinning. J Bone Miner Res. 2014; 29:1101–1109. PMID: 24877245.
Article
16. Chopin F, Biver E, Funck-Brentano T, et al. Prognostic interest of bone turnover markers in the management of postmenopausal osteoporosis. Joint Bone Spine. 2012; 79:26–31. PMID: 21723772.
Article
17. Vasikaran S, Eastell R, Bruyère O, et al. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int. 2011; 22:391–420. PMID: 21184054.
Article
18. Garnero P, Cloos P, Sornay-Rendu E, et al. Type I collagen racemization and isomerization and the risk of fracture in postmenopausal women: the OFELY prospective study. J Bone Miner Res. 2002; 17:826–833. PMID: 12009013.
Article
19. Johnell O, Odén A, De Laet C, et al. Biochemical indices of bone turnover and the assessment of fracture probability. Osteoporos Int. 2002; 13:523–526. PMID: 12111011.
Article
20. Ross PD, Kress BC, Parson RE, et al. Serum bone alkaline phosphatase and calcaneus bone density predict fractures: a prospective study. Osteoporos Int. 2000; 11:76–82. PMID: 10663362.
Article
21. Vergnaud P, Garnero P, Meunier PJ, et al. Undercarboxylated osteocalcin measured with a specific immunoassay predicts hip fracture in elderly women: the EPIDOS Study. J Clin Endocrinol Metab. 1997; 82:719–724. PMID: 9062471.
Article
22. Gerdhem P, Ivaska KK, Alatalo SL, et al. Biochemical markers of bone metabolism and prediction of fracture in elderly women. J Bone Miner Res. 2004; 19:386–393. PMID: 15040826.
Article
23. Marques EA, Gudnason V, Lang T, et al. Association of bone turnover markers with volumetric bone loss, periosteal apposition, and fracture risk in older men and women: the AGES-Reykjavik longitudinal study. Osteoporos Int. 2016; 27:3485–3494. PMID: 27341810.
Article
24. Melton LJ 3rd, Crowson CS, O'Fallon WM, et al. Relative contributions of bone density, bone turnover, and clinical risk factors to long-term fracture prediction. J Bone Miner Res. 2003; 18:312–318. PMID: 12568408.
Article
25. Silva MJ. Biomechanics of osteoporotic fractures. Injury. 2007; 38(Suppl 3):S69–S76. PMID: 17723795.
Article
26. Kanis JA, Johnell O, Oden A, et al. Long-term risk of osteoporotic fracture in Malmo. Osteoporos Int. 2000; 11:669–674. PMID: 11095169.
27. Vasikaran S. Assessment of bone turnover in osteoporosis: harmonization of the total testing process. Clin Chem Lab Med. 2018; DOI: 10.1515/cclm-2017-1109.
Article
28. Ulivieri FM, Piodi LP, Grossi E, et al. The role of carboxy-terminal cross-linking telopeptide of type I collagen, dual x-ray absorptiometry bone strain and Romberg test in a new osteoporotic fracture risk evaluation: a proposal from an observational study. PLoS One. 2018; 13:e0190477. PMID: 29304151.
Article
29. Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury. 2007; 38(Suppl 4):S3–S6.
Article
30. Ivaska KK, Gerdhem P, Väänänen HK, et al. Bone turnover markers and prediction of fracture: a prospective follow-up study of 1,040 elderly women for a mean of 9 years. J Bone Miner Res. 2010; 25:393–403. PMID: 19961336.
Article
31. Cox G, Einhorn TA, Tzioupis C, et al. Bone-turnover markers in fracture healing. J Bone Joint Surg Br. 2010; 92:329–334. PMID: 20190300.
Article
32. Moghaddam A, Muller U, Roth HJ, et al. TRACP 5b and CTX as osteological markers of delayed fracture healing. Injury. 2011; 42:758–764. PMID: 21168135.
Article
33. Marchelli D, Piodi LP, Corradini C, et al. Increased serum OPG in atrophic nonunion shaft fractures. J Orthop Traumatol. 2009; 10:55–58. PMID: 19484355.
Article
34. Hoesel LM, Wehr U, Rambeck WA, et al. Biochemical bone markers are useful to monitor fracture repair. Clin Orthop Relat Res. 2005; 440:226–232. PMID: 16239812.
Article
35. Hoshino H, Takahashi M, Kushida K, et al. Urinary excretion of type I collagen degradation products in healthy women and osteoporotic patients with vertebral and hip fractures. Calcif Tissue Int. 1998; 62:36–39. PMID: 9405731.
Article
36. Kolios L, Hitzler M, Moghaddam A, et al. Characteristics of bone metabolism markers during the healing of osteoporotic versus nonosteoporotic metaphyseal long bone fractures: a matched pair analysis. Eur J Trauma Emerg Surg. 2012; 38:457–462. PMID: 26816128.
Article
37. Bollen AM, Kiyak HA, Eyre DR. Longitudinal evaluation of a bone resorption marker in elderly subjects. Osteoporos Int. 1997; 7:544–549. PMID: 9604050.
Article
38. Sousa CP, Dias IR, Lopez-Peña M, et al. Bone turnover markers for early detection of fracture healing disturbances: a review of the scientific literature. An Acad Bras Cienc. 2015; 87:1049–1061. PMID: 25993365.
Article
39. Wölfl C, Schweppenhäuser D, Gühring T, et al. Characteristics of bone turnover in the long bone metaphysis fractured patients with normal or low Bone Mineral Density (BMD). PLoS One. 2014; 9:e96058. PMID: 24788647.
Article
40. Kumar M, Shelke D, Shah S. Prognostic potential of markers of bone turnover in delayed-healing tibial diaphyseal fractures. Eur J Trauma Emerg Surg. 2017; DOI: 10.1007/s00068-017-0879-2.
Article
41. Kurdy NM. Serology of abnormal fracture healing: the role of PIIINP, PICP, and BsALP. J Orthop Trauma. 2000; 14:48–53. PMID: 10630803.
Article
42. Coulibaly MO, Sietsema DL, Burgers TA, et al. Recent advances in the use of serological bone formation markers to monitor callus development and fracture healing. Crit Rev Eukaryot Gene Expr. 2010; 20:105–127. PMID: 21133841.
Article
43. Seebeck P, Bail HJ, Exner C, et al. Do serological tissue turnover markers represent callus formation during fracture healing? Bone. 2005; 37:669–677. PMID: 16126014.
Article
44. Sousa CP, Lopez-Peña M, Guzón FM, et al. Evaluation of bone turnover markers and serum minerals variations for predicting fracture healing versus non-union processes in adult sheep as a model for orthopedic research. Injury. 2017; 48:1768–1775. PMID: 28601248.
Article
45. Komnenou A, Karayannopoulou M, Polizopoulou ZS, et al. Correlation of serum alkaline phosphatase activity with the healing process of long bone fractures in dogs. Vet Clin Pathol. 2005; 34:35–38. PMID: 15732015.
Article
46. Lin JP, Shi ZJ, Shen NJ, et al. Serum N-terminal telopeptide of type I collagen as an early marker of fracture nonunion in rabbits. Exp Ther Med. 2016; 12:3595–3601. PMID: 28105092.
Article
Full Text Links
  • JBM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr