1. Chen Z, Laurence A, Kanno Y, Pacher-Zavisin M, Zhu BM, Tato C, Yoshimura A, Hennighausen L, O'Shea JJ. Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells. Proc Natl Acad Sci U S A. 2006; 103:8137–8142.
Article
2. Corbeil LB, Blau K, Inzana TJ, Nielsen KH, Jacobson RH, Corbeil RR, Winter AJ. Killing of Brucella abortus by bovine serum. Infect Immun. 1988; 56:3251–3261.
3. Corbel MJ. Brucellosis in Humans and Animals. Geneva: World Health Organization;2006.
4. Han Y, Han X, Wang S, Meng Q, Zhang Y, Ding C, Yu S. The
waaL gene is involved in lipopolysaccharide synthesis and plays a role on the bacterial pathogenesis of avian pathogenic
Escherichia coli. Vet Microbiol. 2014; 172:486–491.
Article
5. International Office of Epizootics (OIE). Manual of Diagnostic Tests and Vaccines for Terrestrial Animals: Mammals, Birds, and Bees. 7th ed. Paris: OIE;2009.
6. Kim WK, Moon JY, Kim S, Hur J. Comparison between immunization routes of live attenuated
Salmonella Typhimurium strains expressing BCSP, Omp3b, and SOD of
Brucella abortus in murine model. Front Microbiol. 2016; 7:550.
Article
7. Lalsiamthara J, Kamble NM, Lee JH. A live attenuated
Salmonella Enteritidis secreting detoxified heat labile toxin enhances mucosal immunity and confers protection against wild-type challenge in chickens. Vet Res. 2016; 47:60.
Article
8. Lalsiamthara J, Lee JH.
Brucella lipopolysaccharide reinforced
Salmonella delivering
Brucella immunogens protects mice against virulent challenge. Vet Microbiol. 2017; 205:84–91.
Article
9. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2
−ΔΔCT method. Methods. 2001; 25:402–408.
Article
10. McGeachy MJ, Cua DJ. Th17 cell differentiation: the long and winding road. Immunity. 2008; 28:445–453.
Article
11. Mills KH. Induction, function and regulation of IL-17-producing T cells. Eur J Immunol. 2008; 38:2636–2649.
Article
12. Nymo IH, Tryland M, Godfroid J. A review of
Brucella infection in marine mammals, with special emphasis on
Brucella pinnipedialis in the hooded seal (
Cystophora cristata). Vet Res. 2011; 42:93.
Article
13. Oñate AA, Vemulapalli R, Andrews E, Schurig GG, Boyle S, Folch H. Vaccination with live
Escherichia coli expressing
Brucella abortus Cu/Zn superoxide dismutase protects mice against virulent
B. abortus. Infect Immun. 1999; 67:986–988.
Article
14. Pappas G, Akritidis N, Bosilkovski M, Tsianos E. Brucellosis. N Engl J Med. 2005; 352:2325–2336.
Article
15. Pasquevich KA, Ibañez AE, Coria LM, García Samartino C, Estein SM, Zwerdling A, Barrionuevo P, Oliveira FS, Seither C, Warzecha H, Oliveira SC, Giambartolomei GH, Cassataro J. An oral vaccine based on U-Omp19 induces protection against B. abortus mucosal challenge by inducing an adaptive IL-17 immune response in mice. PLoS One. 2011; 6:e16203.
16. Schurig GG, Roop RM 2nd, Bagchi T, Boyle S, Buhrman D, Sriranganathan N. Biological properties of RB51; a stable rough strain of
Brucella abortus. Vet Microbiol. 1991; 28:171–188.
Article
17. Skyberg JA, Thornburg T, Pascual DW. IL-17 is required for protective immunity to nasal Brucella infections in an IFN-γ-dependent fashion. J Immunol. 2009; 182:1 Suppl. 39.23.
18. Spera JM, Ugalde JE, Mucci J, Comerci DJ, Ugalde RA. A B lymphocyte mitogen is a
Brucella abortus virulence factor required for persistent infection. Proc Natl Acad Sci U S A. 2006; 103:16514–16519.
Article
19. Trautwein-Weidner K, Gladiator A, Nur S, Diethelm P, LeibundGut-Landmann S. IL-17-mediated antifungal defense in the oral mucosa is independent of neutrophils. Mucosal Immunol. 2015; 8:221–231.
Article
20. Velikovsky CA, Cassataro J, Giambartolomei GH, Goldbaum FA, Estein S, Bowden RA, Bruno L, Fossati CA, Spitz M. A DNA vaccine encoding lumazine synthase from
Brucella abortus induces protective immunity in BALB/c mice. Infect Immun. 2002; 70:2507–2511.
Article
21. Vitry MA, De Trez C, Goriely S, Dumoutier L, Akira S, Ryffel B, Carlier Y, Letesson JJ, Muraille E. Crucial role of gamma interferon-producing CD4
+ Th1 cells but dispensable function of CD8
+ T cell, B cell, Th, and Th17 responses in the control of
Brucella melitensis infection in mice. Infect Immun. 2012; 80:4271–4280.
Article
22. Vitry MA, Hanot Mambres D, De Trez C, Akira S, Ryffel B, Letesson JJ, Muraille E. Humoral immunity and CD4
+ Th1 cells are both necessary for a fully protective immune response upon secondary infection with
Brucella melitensis. J Immunol. 2014; 192:3740–3752.
Article
23. Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, Schwarzenberger P, Oliver P, Huang W, Zhang P, Zhang J, Shellito JE, Bagby GJ, Nelson S, Charrier K, Peschon JJ, Kolls JK. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med. 2001; 194:519–527.
Article