J Vet Sci.  2018 May;19(3):319-330. 10.4142/jvs.2018.19.3.319.

Microglial involvement in the development of olfactory dysfunction

Affiliations
  • 1Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan 49241, Korea.
  • 2Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea. kangpub@snu.ac.kr
  • 3Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.

Abstract

Olfactory impairment is the most common clinical manifestation among the elderly, and its prevalence increases sharply with age. Notably, growing evidence has shown that olfactory dysfunction is the first sign of neurodegeneration, indicating the importance of olfactory assessment as an early marker in the diagnosis of neurological disorders. In this review, we describe the nature of olfactory dysfunction and the advantage of using animal models in olfaction study, and we include a brief introduction to olfactory behavior tests widely used in this field. The contribution of microglia in the neurodegenerative processes including olfactory impairment is then discussed to provide a comprehensive description of the physiopathological role of interactions between neurons and microglia within the olfactory system.

Keyword

Niemann-Pick disease type C; microglia; neurodegenerative diseases; smell

MeSH Terms

Aged
Behavior Rating Scale
Diagnosis
Humans
Microglia
Models, Animal
Nervous System Diseases
Neurodegenerative Diseases
Neurons
Prevalence
Smell

Figure

  • Fig. 1 Cholesterol accumulation in the olfactory system of Niemann-Pick disease type C (NPC) mice. Representative filipin-stained images showing intracellular cholesterol in the olfactory epithelium (OE; A) and the olfactory bulb (OB; B) of 8-week-old wild-type (WT) and NPC model mice. Scale bars = 100µm (A and B).

  • Fig. 2 Distribution patterns of olfactory sensory neurons and other periglomerular neurons in the olfactory epithelium (OE; A) and olfactory bulb (OB; B) revealed by immunohistochemical analysis. Relative expression intensity of olfactory marker protein (OMP) in Niemann-Pick disease type C (NPC) mice is down-regulated compared to that in wild-type (WT) controls in both the OE (A) and OB (B), indicating that the number of olfactory sensory neurons are decreased in NPC status. (C) Tyrosine hydroxylase (TH)-expressing neurons, a type of periglomerular neuron, are damaged in the OB of NPC mice compared to those of WT counterparts. Scale bars = 50 µm (A and C), 100 µm (B).

  • Fig. 3 A simplified schematic diagram of neuron-microglia involvement in olfactory dysfunction in Niemann-Pick disease type C (NPC) mice. Briefly, NPC mutation upregulates intracellular cholesterol followed by p38 MAPK signaling activation in microglia. In response to this activation, multiple cytotoxic molecules are secreted, leading to direct neurotoxicity. In addition, p38 MAPK signaling enhances the maturation of microglial cathepsin S, thereby increasing the shedding of neuronal chemokine Cx3cl1. The Cx3cl1 secretion results in the recruitment of Cx3cr1 (a specific receptor for Cx3cl1)-bearing microglia, which eventually results in repetitive cycling between neurons and microglia in the NPC-affected OB. Importantly, blockage of this pathway either by a Cx3cl1 neutralizing antibody or by the cathepsin S inhibitor LHVS successfully prevents microglial activation and, in turn, restores olfaction of NPC mice. This illustration is a modified version of the ‘The Table of Contents Image’ in our recently published article as stated. Source: Seo Y, et al. Glia 2016, 64(12), 2291-2305.


Reference

1. Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci. 2007; 10:1538–1543.
Article
2. Alam MS, Getz M, Yi S, Kurkewich J, Safeukui I, Haldar K. Plasma signature of neurological disease in the monogenetic disorder Niemann-Pick Type C. J Biol Chem. 2014; 289:8051–8066.
Article
3. Albers MW, Tabert MH, Devanand DP. Olfactory dysfunction as a predictor of neurodegenerative disease. Curr Neurol Neurosci Rep. 2006; 6:379–386.
Article
4. Alvarado-Martínez R, Salgado-Puga K, Peña-Ortega F. Amyloid beta inhibits olfactory bulb activity and the ability to smell. PLoS One. 2013; 8:e75745.
Article
5. Arnold SE, Lee EB, Moberg PJ, Stutzbach L, Kazi H, Han LY, Lee VM, Trojanowski JQ. Olfactory epithelium amyloid-beta and paired helical filament-tau pathology in Alzheimer disease. Ann Neurol. 2010; 67:462–469.
Article
6. Ashwell K. The distribution of microglia and cell death in the fetal rat forebrain. Brain Res Dev Brain Res. 1991; 58:1–12.
Article
7. Attems J, Jellinger KA. Olfactory tau pathology in Alzheimer disease and mild cognitive impairment. Clin Neuropathol. 2006; 25:265–271.
8. Attems J, Walker L, Jellinger KA. Olfaction and aging: a mini-review. Gerontology. 2015; 61:485–490.
Article
9. Attems J, Walker L, Jellinger KA. Olfactory bulb involvement in neurodegenerative diseases. Acta Neuropathol. 2014; 127:459–475.
Article
10. Bahar-Fuchs A, Chételat G, Villemagne VL, Moss S, Pike K, Masters CL, Rowe C, Savage G. Olfactory deficits and amyloid-β burden in Alzheimer's disease, mild cognitive impairment, and healthy aging: a PiB PET study. J Alzheimers Dis. 2010; 22:1081–1087.
Article
11. Bailey MS, Puche AC, Shipley MT. Development of the olfactory bulb: evidence for glia-neuron interactions in glomerular formation. J Comp Neurol. 1999; 415:423–448.
Article
12. Bailey MS, Shipley MT. Astrocyte subtypes in the rat olfactory bulb: morphological heterogeneity and differential laminar distribution. J Comp Neurol. 1993; 328:501–526.
Article
13. Barresi M, Ciurleo R, Giacoppo S, Foti Cuzzola V, Celi D, Bramanti P, Marino S. Evaluation of olfactory dysfunction in neurodegenerative diseases. J Neurol Sci. 2012; 323:16–24.
Article
14. Beach TG, Kuo YM, Spiegel K, Emmerling MR, Sue LI, Kokjohn K, Roher AE. The cholinergic deficit coincides with Abeta deposition at the earliest histopathologic stages of Alzheimer disease. J Neuropathol Exp Neurol. 2000; 59:308–313.
Article
15. Berkley MA, Stebbins WC. Comparative Perception. New York: Wiley;1990.
16. Bernal-Mondragón C, Rivas-Arancibia S, Kendrick KM, Guevara-Guzmán R. Estradiol prevents olfactory dysfunction induced by A-β 25-35 injection in hippocampus. BMC Neurosci. 2013; 14:104.
Article
17. Bhatnagar KP, Kennedy RC, Baron G, Greenberg RA. Number of mitral cells and the bulb volume in the aging human olfactory bulb: a quantitative morphological study. Anat Rec. 1987; 218:73–87.
Article
18. Boesveldt S, Lindau ST, McClintock MK, Hummel T, Lundstrom JN. Gustatory and olfactory dysfunction in older adults: a national probability study. Rhinology. 2011; 49:324–330.
Article
19. Bohnen NI, Müller ML, Kotagal V, Koeppe RA, Kilbourn MA, Albin RL, Frey KA. Olfactory dysfunction, central cholinergic integrity and cognitive impairment in Parkinson's disease. Brain. 2010; 133:1747–1754.
Article
20. Bonito-Oliva A, Masini D, Fisone G. A mouse model of non-motor symptoms in Parkinson's disease: focus on pharmacological interventions targeting affective dysfunctions. Front Behav Neurosci. 2014; 8:290.
Article
21. Braak H, Del Tredici K, Bratzke H, Hamm-Clement J, Sandmann-Keil D, Rüb U. Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson's disease (preclinical and clinical stages). J Neurol. 2002; 249:Suppl 3. III/1–III/5.
Article
22. Breton-Provencher V, Lemasson M, Peralta MR 3rd, Saghatelyan A. Interneurons produced in adulthood are required for the normal functioning of the olfactory bulb network and for the execution of selected olfactory behaviors. J Neurosci. 2009; 29:15245–15257.
Article
23. Brunjes PC. Unilateral naris closure and olfactory system development. Brain Res Brain Res Rev. 1994; 19:146–160.
Article
24. Burkert S, Haberland EJ, Gudziol H. [Olfactory and gustatory disorders–causes, diagnosis and treatment]. MMW Fortschr Med. 2005; 147:4951–53. German.
25. Buschhüter D, Smitka M, Puschmann S, Gerber JC, Witt M, Abolmaali ND, Hummel T. Correlation between olfactory bulb volume and olfactory function. Neuroimage. 2008; 42:498–502.
Article
26. Caggiano AO, Brunjes PC. Microglia and the developing olfactory bulb. Neuroscience. 1993; 52:717–724.
Article
27. Caminiti F, Ciurleo R, Bramanti P, Marino S. Persistent anosmia in a traumatic brain injury patient: role of orbitofrontal cortex. Brain Inj. 2013; 27:1715–1718.
Article
28. Caminiti F, De Salvo S, De Cola MC, Russo M, Bramanti P, Marino S, Ciurleo R. Detection of olfactory dysfunction using olfactory event related potentials in young patients with multiple sclerosis. PLoS One. 2014; 9:e103151.
Article
29. Cartier L, Hartley O, Dubois-Dauphin M, Krause KH. Chemokine receptors in the central nervous system: role in brain inflammation and neurodegenerative diseases. Brain Res Brain Res Rev. 2005; 48:16–42.
Article
30. Cassano T, Romano A, Macheda T, Colangeli R, Cimmino CS, Petrella A, LaFerla FM, Cuomo V, Gaetani S. Olfactory memory is impaired in a triple transgenic model of Alzheimer disease. Behav Brain Res. 2011; 224:408–412.
Article
31. Cheal M. Social olfaction: a review of the ontogeny of olfactory influences on vertebrate behavior. Behav Biol. 1975; 15:1–25.
Article
32. Cheng D, Logge W, Low JK, Garner B, Karl T. Novel behavioural characteristics of the APPSwe/PS1ΔE9 transgenic mouse model of Alzheimer's disease. Behav Brain Res. 2013; 245:120–127.
Article
33. Colton CA, Gilbert DL. Production of superoxide anions by a CNS macrophage, the microglia. FEBS Lett. 1987; 223:284–288.
Article
34. Croy I, Nordin S, Hummel T. Olfactory disorders and quality of life--an updated review. Chem Senses. 2014; 39:185–194.
Article
35. Daniel SE, Hawkes CH. Preliminary diagnosis of Parkinson's disease by olfactory bulb pathology. Lancet. 1992; 340:186.
Article
36. Denizet M, Cotter L, Lledo PM, Lazarini F. Sensory deprivation increases phagocytosis of adult-born neurons by activated microglia in the olfactory bulb. Brain Behav Immun. 2017; 60:38–43.
Article
37. Doorn KJ, Goudriaan A, Blits-Huizinga C, Bol JG, Rozemuller AJ, Hoogland PV, Lucassen PJ, Drukarch B, van de Berg WD, van Dam AM. Increased amoeboid microglial density in the olfactory bulb of Parkinson's and Alzheimer's patients. Brain Pathol. 2014; 24:152–165.
Article
38. Doty RL. Handbook of Olfaction and Gustation. 3rd ed. Hoboken: Wiley;2015.
39. Doty RL. Olfactory dysfunction and its measurement in the clinic and workplace. Int Arch Occup Environ Health. 2006; 79:268–282.
Article
40. Doty RL, Kamath V. The influences of age on olfaction: a review. Front Psychol. 2014; 5:20.
Article
41. Doty RL, Shaman P, Applebaum SL, Giberson R, Siksorski L, Rosenberg L. Smell identification ability: changes with age. Science. 1984; 226:1441–1443.
Article
42. Fiske BK, Brunjes PC. Microglial activation in the developing rat olfactory bulb. Neuroscience. 2000; 96:807–815.
Article
43. Fleming SM, Tetreault NA, Mulligan CK, Hutson CB, Masliah E, Chesselet MF. Olfactory deficits in mice overexpressing human wildtype alpha-synuclein. Eur J Neurosci. 2008; 28:247–256.
44. Fraile PQ, Hernández EM, Martínez de Aragón A, Macias-Vidal J, Coll MJ, Espert AN, Silva MT. [Niemann-Pick type C disease: from neonatal cholestasis to neurological degeneration. Different phenotypes]. An Pediatr. 2010; 73:257–263. Spanish.
45. García-Marqués J, López-Mascaraque L. Clonal mapping of astrocytes in the olfactory bulb and rostral migratory stream. Cereb Cortex. 2017; 27:2195–2209.
Article
46. Getchell TV. Smell and Taste in Health and Disease. New York: Raven Press;1991.
47. Ginhoux F, Lim S, Hoeffel G, Low D, Huber T. Origin and differentiation of microglia. Front Cell Neurosci. 2013; 7:45.
Article
48. Godoy MD, Voegels RL, Pinna Fde R, Imamura R, Farfel JM. Olfaction in neurologic and neurodegenerative diseases: a literature review. Int Arch Otorhinolaryngol. 2015; 19:176–179.
Article
49. Gomes FC, Spohr TC, Martinez R, Moura Neto V. Cross-talk between neurons and glia: highlights on soluble factors. Braz J Med Biol Res. 2001; 34:611–620.
Article
50. Grier BD, Belluscio L, Cheetham CE. Olfactory sensory activity modulates microglial-neuronal interactions during dopaminergic cell loss in the olfactory bulb. Front Cell Neurosci. 2016; 10:178.
Article
51. Guérin D, Sacquet J, Mandairon N, Jourdan F, Didier A. Early locus coeruleus degeneration and olfactory dysfunctions in Tg2576 mice. Neurobiol Aging. 2009; 30:272–283.
Article
52. Herbert RP, Harris J, Chong KP, Chapman J, West AK, Chuah MI. Cytokines and olfactory bulb microglia in response to bacterial challenge in the compromised primary olfactory pathway. J Neuroinflammation. 2012; 9:109.
Article
53. Héron B, Ogier H. [Niemann-Pick type C disease: clinical presentations in pediatric patients]. Arch Pediatr. 2010; 17:Suppl 2. S45–S49. French.
54. Hovakimyan M, Meyer A, Lukas J, Luo J, Gudziol V, Hummel T, Rolfs A, Wree A, Witt M. Olfactory deficits in Niemann-Pick type C1 (NPC1) disease. PLoS One. 2013; 8:e82216.
Article
55. Kandasamy M, Rosskopf M, Wagner K, Klein B, Couillard-Despres S, Reitsamer HA, Stephan M, Nguyen HP, Riess O, Bogdahn U, Winkler J, von Horsten S, Aigner L. Reduction in subventricular zone-derived olfactory bulb neurogenesis in a rat model of Huntington's disease is accompanied by striatal invasion of neuroblasts. PLoS One. 2015; 10:e0116069.
Article
56. Keller A, Malaspina D. Hidden consequences of olfactory dysfunction: a patient report series. BMC Ear Nose Throat Disord. 2013; 13:8.
Article
57. Kingwell K. Neurodegenerative disease: microglia in early disease stages. Nat Rev Neurol. 2012; 8:475.
58. Kiyota T, Okuyama S, Swan RJ, Jacobsen MT, Gendelman HE, Ikezu T. CNS expression of anti-inflammatory cytokine interleukin-4 attenuates Alzheimer's disease-like pathogenesis in APP+PS1 bigenic mice. FASEB J. 2010; 24:3093–3102.
Article
59. Kohl Z, Regensburger M, Aigner R, Kandasamy M, Winner B, Aigner L, Winkler J. Impaired adult olfactory bulb neurogenesis in the R6/2 mouse model of Huntington's disease. BMC Neurosci. 2010; 11:114.
Article
60. Komohara Y, Ohnishi K, Kuratsu J, Takeya M. Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J Pathol. 2008; 216:15–24.
Article
61. Lafreniere D, Mann N. Anosmia: loss of smell in the elderly. Otolaryngol Clin North Am. 2009; 42:123–131.
Article
62. Lane AP, Turner J, May L, Reed R. A genetic model of chronic rhinosinusitis-associated olfactory inflammation reveals reversible functional impairment and dramatic neuroepithelial reorganization. J Neurosci. 2010; 30:2324–2329.
Article
63. Lazarini F, Gabellec MM, Torquet N, Lledo PM. Early activation of microglia triggers long-lasting impairment of adult neurogenesis in the olfactory bulb. J Neurosci. 2012; 32:3652–3664.
Article
64. Lazic SE, Goodman AO, Grote HE, Blakemore C, Morton AJ, Hannan AJ, van Dellen A, Barker RA. Olfactory abnormalities in Huntington's disease: decreased plasticity in the primary olfactory cortex of R6/1 transgenic mice and reduced olfactory discrimination in patients. Brain Res. 2007; 1151:219–226.
Article
65. Lee AC, Tian H, Grosmaitre X, Ma M. Expression patterns of odorant receptors and response properties of olfactory sensory neurons in aged mice. Chem Senses. 2009; 34:695–703.
Article
66. Lee WH, Wee JH, Kim DK, Rhee CS, Lee CH, Ahn S, Lee JH, Cho YS, Lee KH, Kim KS, Kim SW, Lee A, Kim JW. Prevalence of subjective olfactory dysfunction and its risk factors: Korean National Health and Nutrition Examination Survey. PLoS One. 2013; 8:e62725.
Article
67. Liu B, Gao HM, Wang JY, Jeohn GH, Cooper CL, Hong JS. Role of nitric oxide in inflammation-mediated neurodegeneration. Ann N Y Acad Sci. 2002; 962:318–331.
Article
68. Lledo PM, Gheusi G, Vincent JD. Information processing in the mammalian olfactory system. Physiol Rev. 2005; 85:281–317.
Article
69. Lötsch J, Hummel T. The clinical significance of electrophysiological measures of olfactory function. Behav Brain Res. 2006; 170:78–83.
Article
70. Mirich JM, Williams NC, Berlau DJ, Brunjes PC. Comparative study of aging in the mouse olfactory bulb. J Comp Neurol. 2002; 454:361–372.
Article
71. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008; 8:958–969.
Article
72. Nathan BP, Yost J, Litherland MT, Struble RG, Switzer PV. Olfactory function in apoE knockout mice. Behav Brain Res. 2004; 150:1–7.
Article
73. Ogier de. [Niemann-Pick type C disease: an early diagnosis for a therapeutic hope]. Arch Pediatr. 2010; 17:S39–S40. French.
74. Pentchev PG, Comly ME, Kruth HS, Vanier MT, Wenger DA, Patel S, Brady RO. A defect in cholesterol esterification in Niemann-Pick disease (type C) patients. Proc Natl Acad Sci U S A. 1985; 82:8247–8251.
Article
75. Perry VH, Nicoll JA, Holmes C. Microglia in neurodegenerative disease. Nat Rev Neurol. 2010; 6:193–201.
Article
76. Pickering M, Cumiskey D, O'Connor JJ. Actions of TNF-alpha on glutamatergic synaptic transmission in the central nervous system. Exp Physiol. 2005; 90:663–670.
Article
77. Ribeiro Xavier AL, Kress BT, Goldman SA, Lacerda de, Nedergaard M. A distinct population of microglia supports adult neurogenesis in the subventricular zone. J Neurosci. 2015; 35:11848–11861.
Article
78. Ross GW, Petrovitch H, Abbott RD, Tanner CM, Popper J, Masaki K, Launer L, White LR. Association of olfactory dysfunction with risk for future Parkinson's disease. Ann Neurol. 2008; 63:167–173.
Article
79. Saiz-Sanchez D, Ubeda-Bañon I, De la Rosa-Prieto C, Martinez-Marcos A. Differential expression of interneuron populations and correlation with amyloid-β deposition in the olfactory cortex of an AβPP/PS1 transgenic mouse model of Alzheimer's disease. J Alzheimers Dis. 2012; 31:113–129.
Article
80. Sato K. Effects of microglia on neurogenesis. Glia. 2015; 63:1394–1405.
Article
81. Schintu N, Frau L, Ibba M, Caboni P, Garau A, Carboni E, Carta AR. PPAR-gamma-mediated neuroprotection in a chronic mouse model of Parkinson's disease. Eur J Neurosci. 2009; 29:954–963.
Article
82. Seo Y, Kim HS, Kang I, Choi SW, Shin TH, Shin JH, Lee BC, Lee JY, Kim JJ, Kook MG, Kang KS. Cathepsin S contributes to microglia-mediated olfactory dysfunction through the regulation of Cx3cl1-Cx3cr1 axis in a Niemann-Pick disease type C1 model. Glia. 2016; 64:2291–2305.
Article
83. Seo Y, Kim HS, Shin Y, Kang I, Choi SW, Yu KR, Seo KW, Kang KS. Excessive microglial activation aggravates olfactory dysfunction by impeding the survival of newborn neurons in the olfactory bulb of Niemann-Pick disease type C1 mice. Biochim Biophys Acta. 2014; 1842:2193–2203.
Article
84. Sierra A, Encinas JM, Deudero JJ, Chancey JH, Enikolopov G, Overstreet-Wadiche LS, Tsirka SE, Maletic-Savatic M. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell. 2010; 7:483–495.
Article
85. Sohrabi HR, Bates KA, Weinborn MG, Johnston AN, Bahramian A, Taddei K, Laws SM, Rodrigues M, Morici M, Howard M, Martins G, Mackay-Sim A, Gandy SE, Martins RN. Olfactory discrimination predicts cognitive decline among community-dwelling older adults. Transl Psychiatry. 2012; 2:e118.
Article
86. Steinbach S, Staudenmaier R, Hummel T, Arnold W. [Loss of olfaction with aging: a frequent disorder receiving little attention]. Z Gerontol Geriatr. 2008; 41:394–402. German.
87. Sultan B, May LA, Lane AP. The role of TNF-α in inflammatory olfactory loss. Laryngoscope. 2011; 121:2481–2486.
Article
88. Sunderman FW Jr. Nasal toxicity, carcinogenicity, and olfactory uptake of metals. Ann Clin Lab Sci. 2001; 31:3–24.
89. Suzukawa K, Kondo K, Kanaya K, Sakamoto T, Watanabe K, Ushio M, Kaga K, Yamasoba T. Age-related changes of the regeneration mode in the mouse peripheral olfactory system following olfactotoxic drug methimazole-induced damage. J Comp Neurol. 2011; 519:2154–2174.
Article
90. Tang Y, Li H, Liu JP. Niemann-pick disease type C: from molecule to clinic. Clin Exp Pharmacol Physiol. 2010; 37:132–140.
Article
91. Taylor TN, Caudle WM, Shepherd KR, Noorian A, Jackson CR, Iuvone PM, Weinshenker D, Greene JG, Miller GW. Nonmotor symptoms of Parkinson's disease revealed in an animal model with reduced monoamine storage capacity. J Neurosci. 2009; 29:8103–8113.
Article
92. Tepavčević V, Lazarini F, Alfaro-Cervello C, Kerninon C, Yoshikawa K, Garcia-Verdugo JM, Lledo PM, Nait-Oumesmar B, Baron-Van Evercooren A. Inflammation-induced subventricular zone dysfunction leads to olfactory deficits in a targeted mouse model of multiple sclerosis. J Clin Invest. 2011; 121:4722–4734.
Article
93. Tremblay MÈ, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A. The role of microglia in the healthy brain. J Neurosci. 2011; 31:16064–16069.
Article
94. Turner JH, Liang KL, May L, Lane AP. Tumor necrosis factor alpha inhibits olfactory regeneration in a transgenic model of chronic rhinosinusitis-associated olfactory loss. Am J Rhinol Allergy. 2010; 24:336–340.
Article
95. Van Dijck A, Vloeberghs E, Van Dam D, Staufenbiel M, De Deyn PP. Evaluation of the APP23-model for Alzheimer's disease in the odour paired-associate test for hippocampusdependent memory. Behav Brain Res. 2008; 190:147–151.
Article
96. Vanier MT. Niemann-Pick disease type C. Orphanet J Rare Dis. 2010; 5:16.
Article
97. Velayudhan L, Lovestone S. Smell identification test as a treatment response marker in patients with Alzheimer disease receiving donepezil. J Clin Psychopharmacol. 2009; 29:387–390.
Article
98. von Bernhardi R, Eugenín J. Microglial reactivity to beta-amyloid is modulated by astrocytes and proinflammatory factors. Brain Res. 2004; 1025:186–193.
Article
99. Wang J, Eslinger PJ, Doty RL, Zimmerman EK, Grunfeld R, Sun X, Meadowcroft MD, Connor JR, Price JL, Smith MB, Yang QX. Olfactory deficit detected by fMRI in early Alzheimer's disease. Brain Res. 2010; 1357:184–194.
Article
100. Wesson DW, Levy E, Nixon RA, Wilson DA. Olfactory dysfunction correlates with amyloid-beta burden in an Alzheimer's disease mouse model. J Neurosci. 2010; 30:505–514.
Article
101. Wilson RS, Arnold SE, Schneider JA, Boyle PA, Buchman AS, Bennett DA. Olfactory impairment in presymptomatic Alzheimer's disease. Ann N Y Acad Sci. 2009; 1170:730–735.
Article
102. Wilson RS, Arnold SE, Schneider JA, Tang Y, Bennett DA. The relationship between cerebral Alzheimer's disease pathology and odour identification in old age. J Neurol Neurosurg Psychiatry. 2007; 78:30–35.
Article
103. Witt RM, Galligan MM, Despinoy JR, Segal R. Olfactory behavioral testing in the adult mouse. J Vis Exp. 2009; (23):e949.
Article
104. Wu N, Rao X, Gao Y, Wang J, Xu F. Amyloid-β deposition and olfactory dysfunction in an Alzheimer's disease model. J Alzheimers Dis. 2013; 37:699–712.
Article
105. Xie F, Fang C, Schnittke N, Schwob JE, Ding X. Mechanisms of permanent loss of olfactory receptor neurons induced by the herbicide 2,6-dichlorobenzonitrile: effects on stem cells and noninvolvement of acute induction of the inflammatory cytokine IL-6. Toxicol Appl Pharmacol. 2013; 272:598–607.
Article
106. Xu L, He D, Bai Y. Microglia-mediated inflammation and neurodegenerative disease. Mol Neurobiol. 2016; 53:6709–6715.
Article
107. Yang M, Crawley JN. Simple behavioral assessment of mouse olfaction. Curr Protoc Neurosci. 2009; 48:Unit 8.24.
Article
108. Young JW, Sharkey J, Finlayson K. Progressive impairment in olfactory working memory in a mouse model of Mild Cognitive Impairment. Neurobiol Aging. 2009; 30:1430–1443.
Article
109. Zhang S, Xiao Q, Le W. Olfactory dysfunction and neurotransmitter disturbance in olfactory bulb of transgenic mice expressing human A53T mutant alpha-synuclein. PLoS One. 2015; 10:e0119928.
110. Zhuo JM, Prakasam A, Murray ME, Zhang HY, Baxter MG, Sambamurti K, Nicolle MM. An increase in Abeta42 in the prefrontal cortex is associated with a reversal-learning impairment in Alzheimer's disease model Tg2576 APPsw mice. Curr Alzheimer Res. 2008; 5:385–391.
Article
Full Text Links
  • JVS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr