1.Robertson AM., Watton PN. Computational fluid dynamics in aneurysm research: critical reflections, future directions. AJNR Am J Neuroradiol. 2012. 33:992–995.
Article
2.Li MH., Chen SW., Li YD., Chen YC., Cheng YS., Hu DJ, et al. Prevalence of unruptured cerebral aneurysms in Chinese adults aged 35 to 75 years: a cross-sectional study. Ann In-tern Med. 2013. 159:514–521.
3.D'Urso PI., Lanzino G., Cloft HJ., Kallmes DF. Flow diversion for intracranial aneurysms: a review. Stroke. 2011. 42:2363–2368.
4.Moyle KR., Antiga L., Steinman DA. Inlet conditions for im-age-based CFD models of the carotid bifurcation: is it rea-sonable to assume fully developed flow? J Biomech Eng. 2006. 128:371–379.
Article
5.Hoi Y., Wasserman BA., Lakatta EG., Steinman DA. Effect of common carotid artery inlet length on normal carotid bi-furcation hemodynamics. J Biomech Eng. 2010. 132:121008.
Article
6.Hodis S., Kargar S., Kallmes DF., Dragomir-Daescu D. Artery length sensitivity in patient-specific cerebral aneurysm simulations. AJNR Am J Neuroradiol. 2015. 36:737–743.
Article
7.Cebral JR., Castro MA., Appanaboyina S., Putman CM., Millan D., Frangi AF. Efficient pipeline for image-based patient-specif-ic analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Trans Med Imaging. 2005. 24:457–467.
Article
8.Hodis S., Kallmes DF., Dragomir-Daescu D. Adaptive grid gen-eration in a patient-specific cerebral aneurysm. Phys Rev E Stat Nonlin Soft Matter Phys. 2013. 88:052720.
Article
9.Jansen IG., Schneiders JJ., Potters WV., van Ooij P., van den Berg R., van Bavel E, et al. Generalized versus patient-specif-ic inflow boundary conditions in computational fluid dy-namics simulations of cerebral aneurysmal hemodynamics. AJNR Am J Neuroradiol. 2014. 35:1543–1548.
Article