1. von Noorden GK. Binocular vision and ocular motility. 2nd ed. St. Louis: Mosby;2002. p. 246.
2. von Noorden GK, Crawford ML. The lateral geniculate nucleus in human strabismic amblyopia. Invest Ophthalmol Vis Sci. 1992; 33:2729–2732.
3. von Noorden GK, Crawford ML, Levacy RA. The lateral geniculate nucleus in human anisometropic amblyopia. Invest Ophthalmol Vis Sci. 1983; 24:788–790.
4. Kiorpes L, Kiper DC, O'Keefe LP, et al. Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia. J Neurosci. 1998; 18:6411–6424.
Article
5. Arden GB, Wooding SL. Pattern ERG in amblyopia. Invest Ophthalmol Vis Sci. 1985; 26:88–96.
6. Delint PJ, Weissenbruch C, Berendschot TT, Norren DV. Photoreceptor function in unilateral amblyopia. Vision Res. 1998; 38:613–617.
Article
7. Lempert P. Optic nerve hypoplasia and small eyes in presumed amblyopia. J AAPOS. 2000; 4:258–266.
Article
8. Altintas O, Yuksel N, Ozkan B, Caglar Y. Thickness of the retinal nerve fiber layer, macular thickness, and macular volume in patients with strabismic amblyopia. J Pediatr Ophthalmol Strabismus. 2005; 42:216–221.
Article
9. Huynh SC, Samarawickrama C, Wang XY, et al. Macular and nerve fiber layer thickness in amblyopia: the Sydney Childhood Eye Study. Ophthalmology. 2009; 116:1604–1609.
10. Huynh SC, Wang XY, Rochtchina E, Mitchell P. Peripapillary retinal nerve fiber layer thickness in a population of 6-year-old children: findings by optical coherence tomography. Ophthalmology. 2006; 113:1583–1592.
11. Salchow DJ, Oleynikov YS, Chiang MF, et al. Retinal nerve fiber layer thickness in normal children measured with optical coherence tomography. Ophthalmology. 2006; 113:786–791.
Article
12. Yu S, Tanabe T, Hangai M, Morishita S, et al. Scanning laser polarimetry with variable corneal compensation and optical coherence tomography in tilted disk. Am J Ophthalmol. 2006; 142:475–482.
Article
13. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B. 1995; 57:289–300.
Article
14. Dickmann A, Petroni S, Perrotta V, et al. Measurement of retinal nerve fiber layer thickness, macular thickness, and foveal volume in amblyopic eyes using spectral-domain optical coherence tomography. J AAPOS. 2012; 16:86–88.
Article
15. Dickmann A, Petroni S, Salerni A, et al. Unilateral amblyopia: an optical coherence tomography study. J AAPOS. 2009; 13:148–150.
Article
16. Al-Haddad CE, Mollayess GM, Cherfan CG, et al. Retinal nerve fibre layer and macular thickness in amblyopia as measured by spectral-domain optical coherence tomography. Br J Ophthalmol. 2011; 95:1696–1699.
Article
17. Park KA, Park DY, Oh SY. Analysis of spectral-domain optical coherence tomography measurements in amblyopia: a pilot study. Br J Ophthalmol. 2011; 95:1700–1706.
Article
18. Pang Y, Frantz KA, Block S, et al. Effect of amblyopia treatment on macular thickness in eyes with myopic anisometropic amblyopia. Invest Ophthalmol Vis Sci. 2015; 56:2677–2683.
Article
19. Bruce A, Pacey IE, Bradbury JA, et al. Bilateral changes in foveal structure in individuals with amblyopia. Ophthalmology. 2013; 120:395–403.
Article
20. Ryan SJ. Retina. Vol 1. Basic science and inherited retinal disease. 3rd ed. St. Louis: Mosby;2001. p. 36–37.
21. von Noorden GK. Binocular vision and ocular motility. 2nd ed. St. Louis: Mosby;2002. p. 271–272.
22. Dubis AM, Costakos DM, Subramaniam CD, et al. Evaluation of normal human foveal development using optical coherence tomography and histologic examination. Arch Ophthalmol. 2012; 130:1291–1300.
Article
23. Vajzovic L, Hendrickson AE, O'Connell RV, et al. Maturation of the human fovea: correlation of spectral-domain optical coherence tomography findings with histology. Am J Ophthalmol. 2012; 154:779–789.
Article