Intest Res.  2018 Jan;16(1):26-42. 10.5217/ir.2018.16.1.26.

Immunological pathogenesis of inflammatory bowel disease

Affiliations
  • 1The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Korea. iammila@catholic.ac.kr

Abstract

Inflammatory bowel disease (IBD) is a chronic inflammatory state of the gastrointestinal tract and can be classified into 2 main clinical phenomena: Crohn's disease (CD) and ulcerative colitis (UC). The pathogenesis of IBD, including CD and UC, involves the presence of pathogenic factors such as abnormal gut microbiota, immune response dysregulation, environmental changes, and gene variants. Although many investigations have tried to identify novel pathogenic factors associated with IBD that are related to environmental, genetic, microbial, and immune response factors, a full understanding of IBD pathogenesis is unclear. Thus, IBD treatment is far from optimal, and patient outcomes can be unsatisfactory. As result of massive studying on IBD, T helper 17 (Th17) cells and innate lymphoid cells (ILCs) are investigated on their effects on IBD. A recent study of the plasticity of Th17 cells focused primarily on colitis. ILCs also emerging as novel cell family, which play a role in the pathogenesis of IBD. IBD immunopathogenesis is key to understanding the causes of IBD and can lead to the development of IBD therapies. The aim of this review is to explain the pathogenesis of IBD, with a focus on immunological factors and therapies.

Keyword

Inflammatory bowel disease; Th17 cells; Innate lymphoid cells

MeSH Terms

Colitis
Colitis, Ulcerative
Crohn Disease
Gastrointestinal Microbiome
Gastrointestinal Tract
Genetics, Microbial
Humans
Immunologic Factors
Inflammatory Bowel Diseases*
Lymphocytes
Plastics
Th17 Cells
Immunologic Factors
Plastics

Figure

  • Fig. 1 Histology of colon tissue from IBD patients. (A) H&E of colon tissue from UC and CD patients (H&E, ×40). (B, C) Signal transducer and activator of transcription 3 (STAT3) and interleukin 17 (IL-17) expression in colon tissue from UC and CD patients (immunohistochemistry, ×200).

  • Fig. 2 Pathogenic innate lymphoid cells (ILCs) and T cells in mucosal cells from IBD patients. ILCs have common properties with T effector cells. Lineage-specific transcription factors expressing ILCs or a subset of T cells produce the same cytokine. Natural cytotoxicity receptor (NCR)-expressing ILCs are classified differently from T cells. T-bet, T-box expressed in T cells; IFN, interferon; TNF, tumor necrosis factor; IL, interleukin; RORγt, retinoic acid receptor-related orphan receptor γt.

  • Fig. 3 Present IBD therapeutic strategies that involve prevention of T cell and innate lymphoid cells (ILC) production or their inhibition. T cells and ILCs have a common therapeutic target. Compared with classical IBD therapeutic agents, new therapeutic strategies may involve T cells; ILCs such as interleukin (IL)-23 and IL-12-, tumor necrosis factor (TNF)-, and integrin-targeting agents; and signal transducer and activator of transcription (STAT) inhibitors. NF, nuclear factor; AP-1, activator protein 1; cAMP, cyclic adenosine 3′:5′-monophosphate.

  • Fig. 4 Reciprocal balance for intestinal immune homeostasis and inflammation. The normal state is mediated by a reciprocal balance between immune cells (Treg and Breg vs. Th17 and ILC1) and cytokines that are secreted to maintain the conditions in the intestine. However, an imbalance in immune cells leads to the destruction of intestinal epithelial cells and the invasion of commensal microbiota. This situation leads to the uncontrolled release of cytokines, which is a key event in the pathogenesis of IBD. Treg, regulatory T; Breg, regulatory B; ILC, innate lymphoid cells; DC, dendritic cell; IL, interleukin; NKT, natural killer T; Th17, T helper 17.


Cited by  7 articles

Clinical Features and Outcomes of Tuberculosis in Inflammatory Bowel Disease Patients Treated with Anti-tumor Necrosis Factor Therapy
Jihye Kim, Jong Pil Im, Jae-Joon Yim, Chang Kyun Lee, Dong Il Park, Chang Soo Eun, Sung-Ae Jung, Jeong Eun Shin, Kang-Moon Lee, Jae Hee Cheon
Korean J Gastroenterol. 2020;75(1):29-38.    doi: 10.4166/kjg.2020.75.1.29.

Anti-inflammatory effects of DA-9601, an extract of Artemisia asiatica, on aceclofenac-induced acute enteritis
Ju Hwan Kim, Chang Yell Shin, Sun Woo Jang, Dong-Seok Kim, Wonae Lee, Hyung-Gun Kim, Hak Rim Kim
Korean J Physiol Pharmacol. 2021;25(5):439-448.    doi: 10.4196/kjpp.2021.25.5.439.

Comparison of Real-World Outcomes of Infliximab versus Adalimumab in Biologic-Naïve Korean Patients with Ulcerative Colitis: A Population-Based Study
Minkyung Han, Yoon Suk Jung, Jae Hee Cheon, Sohee Park
Yonsei Med J. 2020;61(1):48-55.    doi: 10.3349/ymj.2020.61.1.48.

Effect of resistance exercise training on Crohn’s disease patients
Konstantinos Papadimitriou
Intest Res. 2021;19(3):275-281.    doi: 10.5217/ir.2020.00043.

A nationwide analysis on the influence of obesity in inflammatory bowel disease hospitalizations
Dushyant Singh Dahiya, Asim Kichloo, Farah Wani, Jagmeet Singh, Dhanshree Solanki, Hafeez Shaka
Intest Res. 2022;20(3):342-349.    doi: 10.5217/ir.2021.00046.

T-cell immune response against cytomegalovirus in peripheral blood and colonic mucosa from ulcerative colitis and Crohn's disease patients
Seung-Joo Nam, Eun Sun Kim, Yoon Tae Jeen
Intest Res. 2018;16(1):160-162.    doi: 10.5217/ir.2018.16.1.160.

Reviewing not Homer’s Iliad, but “Kai Bao Ben Cao”: indigo dye—the past, present, and future
Yusuke Yoshimatsu, Tomohisa Sujino, Takanori Kanai
Intest Res. 2023;21(2):174-176.    doi: 10.5217/ir.2022.00018.


Reference

1. Bernstein CN, Fried M, Krabshuis JH, et al. Inflammatory bowel disease: a global perspective. Global guidelines. Milwaukee: World Gatroenterology Organization;2009.
2. Baumgart DC, Sandborn WJ. Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet. 2007; 369:1641–1657. PMID: 17499606.
Article
3. Leppkes M, Becker C, Ivanov II, et al. RORgamma-expressing Th17 cells induce murine chronic intestinal inflammation via redundant effects of IL-17A and IL-17F. Gastroenterology. 2009; 136:257–267. PMID: 18992745.
Article
4. Lee SY, Lee SH, Yang EJ, et al. Metformin ameliorates inflammatory bowel disease by suppression of the STAT3 signaling pathway and regulation of the between Th17/Treg balance. PLoS One. 2015; 10:e0135858. DOI: 10.1371/journal.pone.0135858. PMID: 26360050.
Article
5. Dinarello CA. Interleukin-1beta and the autoinflammatory diseases. N Engl J Med. 2009; 360:2467–2470. PMID: 19494224.
6. McAlindon ME, Hawkey CJ, Mahida YR. Expression of interleukin 1 beta and interleukin 1 beta converting enzyme by intestinal macrophages in health and inflammatory bowel disease. Gut. 1998; 42:214–219. PMID: 9536946.
Article
7. Pizarro TT, Michie MH, Bentz M, et al. IL-18, a novel immunoregulatory cytokine, is up-regulated in Crohn's disease: expression and localization in intestinal mucosal cells. J Immunol. 1999; 162:6829–6835. PMID: 10352304.
Article
8. Dinarello CA. IL-18: a TH1-inducing, proinflammatory cytokine and new member of the IL-1 family. J Allergy Clin Immunol. 1999; 103:11–24. PMID: 9893178.
Article
9. Kanai T, Watanabe M, Okazawa A, et al. Macrophage-derived IL-18-mediated intestinal inflammation in the murine model of Crohn's disease. Gastroenterology. 2001; 121:875–888. PMID: 11606501.
Article
10. Maerten P, Shen C, Colpaert S, et al. Involvement of interleukin 18 in Crohn's disease: evidence from in vitro analysis of human gut inflammatory cells and from experimental colitis models. Clin Exp Immunol. 2004; 135:310–317. PMID: 14738461.
Article
11. Schmitz J, Owyang A, Oldham E, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005; 23:479–490. PMID: 16286016.
Article
12. Beltran CJ, Nunez LE, Diaz-Jimenez D, et al. Characterization of the novel ST2/IL-33 system in patients with inflammatory bowel disease. Inflamm Bowel Dis. 2010; 16:1097–1107. PMID: 20014018.
Article
13. Kobori A, Yagi Y, Imaeda H, et al. Interleukin-33 expression is specifically enhanced in inflamed mucosa of ulcerative colitis. J Gastroenterol. 2010; 45:999–1007. PMID: 20405148.
Article
14. Mitsuyama K, Toyonaga A, Sasaki E, et al. Soluble interleukin-6 receptors in inflammatory bowel disease: relation to circulating interleukin-6. Gut. 1995; 36:45–49. PMID: 7890234.
Article
15. Reinisch W, Gasché C, Tillinger W, et al. Clinical relevance of serum interleukin-6 in Crohn's disease: single point measurements, therapy monitoring, and prediction of clinical relapse. Am J Gastroenterol. 1999; 94:2156–2164. PMID: 10445543.
Article
16. Li Y, de Haar C, Chen M, et al. Disease-related expression of the IL6/STAT3/SOCS3 signalling pathway in ulcerative colitis and ulcerative colitis-related carcinogenesis. Gut. 2010; 59:227–235. PMID: 19926618.
Article
17. Murch SH, Braegger CP, Walker-Smith JA, MacDonald TT. Location of tumour necrosis factor alpha by immunohistochemistry in chronic inflammatory bowel disease. Gut. 1993; 34:1705–1709. PMID: 8031350.
Article
18. Sanchez-Munoz F, Dominguez-Lopez A, Yamamoto-Furusho JK. Role of cytokines in inflammatory bowel disease. World J Gastroenterol. 2008; 14:4280–4288. PMID: 18666314.
Article
19. Li MC, He SH. IL-10 and its related cytokines for treatment of inflammatory bowel disease. World J Gastroenterol. 2004; 10:620–625. PMID: 14991925.
Article
20. Schreiber S, Heinig T, Thiele HG, Raedler A. Immunoregulatory role of interleukin 10 in patients with inflammatory bowel disease. Gastroenterology. 1995; 108:1434–1444. PMID: 7729636.
Article
21. Melgar S, Yeung MM, Bas A, et al. Over-expression of interleukin 10 in mucosal T cells of patients with active ulcerative colitis. Clin Exp Immunol. 2003; 134:127–137. PMID: 12974765.
Article
22. Wang AH, Lam WJ, Han DY, et al. The effect of IL-10 genetic variation and interleukin 10 serum levels on Crohn's disease susceptibility in a New Zealand population. Hum Immunol. 2011; 72:431–435. PMID: 21354456.
Article
23. Nielsen OH, Køppen T, Rüdiger N, Horn T, Eriksen J, Kirman I. Involvement of interleukin-4 and -10 in inflammatory bowel disease. Dig Dis Sci. 1996; 41:1786–1793. PMID: 8794795.
Article
24. Mitsuyama K, Tomiyasu N, Takaki K, et al. Interleukin-10 in the pathophysiology of inflammatory bowel disease: increased serum concentrations during the recovery phase. Mediators Inflamm. 2006; 2006:26875. PMID: 17392581.
Article
25. Ljuca F, Gegic A, Salkic NN, Pavlovic-Calic N. Circulating cytokines reflect mucosal inflammatory status in patients with Crohn's disease. Dig Dis Sci. 2010; 55:2316–2326. PMID: 19834804.
Article
26. Li MO, Flavell RA. TGF-beta: a master of all T cell trades. Cell. 2008; 134:392–404. PMID: 18692464.
27. Del Zotto B, Mumolo G, Pronio AM, Montesani C, Tersigni R, Boirivant M. TGF-beta1 production in inflammatory bowel disease: differing production patterns in Crohn's disease and ulcerative colitis. Clin Exp Immunol. 2003; 134:120–126. PMID: 12974764.
Article
28. Rani R, Smulian AG, Greaves DR, Hogan SP, Herbert DR. TGF-beta limits IL-33 production and promotes the resolution of colitis through regulation of macrophage function. Eur J Immunol. 2011; 41:2000–2009. PMID: 21469118.
Article
29. Gu FM, Li QL, Gao Q, et al. IL-17 induces AKT-dependent IL-6/JAK2/STAT3 activation and tumor progression in hepatocellular carcinoma. Mol Cancer. 2011; 10:150. PMID: 22171994.
Article
30. Wruck CJ, Fragoulis A, Gurzynski A, et al. Role of oxidative stress in rheumatoid arthritis: insights from the Nrf2-knockout mice. Ann Rheum Dis. 2011; 70:844–850. PMID: 21173018.
Article
31. Fujino S, Andoh A, Bamba S, et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut. 2003; 52:65–70. PMID: 12477762.
Article
32. Fort MM, Cheung J, Yen D, et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity. 2001; 15:985–995. PMID: 11754819.
33. O'Connor W Jr, Kamanaka M, Booth CJ, et al. A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nat Immunol. 2009; 10:603–609. PMID: 19448631.
34. Kinugasa T, Sakaguchi T, Gu X, Reinecker HC. Claudins regulate the intestinal barrier in response to immune mediators. Gastroenterology. 2000; 118:1001–1011. PMID: 10833473.
Article
35. Sakuraba A, Sato T, Kamada N, Kitazume M, Sugita A, Hibi T. Th1/Th17 immune response is induced by mesenteric lymph node dendritic cells in Crohn's disease. Gastroenterology. 2009; 137:1736–1745. PMID: 19632232.
Article
36. Kleinschek MA, Boniface K, Sadekova S, et al. Circulating and gut-resident human Th17 cells express CD161 and promote intestinal inflammation. J Exp Med. 2009; 206:525–534. PMID: 19273624.
Article
37. Strober W, Zhang F, Kitani A, Fuss I, Fichtner-Feigl S. Proinflammatory cytokines underlying the inflammation of Crohn's disease. Curr Opin Gastroenterol. 2010; 26:310–317. PMID: 20473158.
Article
38. Mahida YR, Ceska M, Effenberger F, Kurlak L, Lindley I, Hawkey CJ. Enhanced synthesis of neutrophil-activating peptide-1/interleukin-8 in active ulcerative colitis. Clin Sci (Lond). 1992; 82:273–275. PMID: 1312411.
Article
39. Grimm MC, Doe WF. Chemokines in inflammatory bowel disease mucosa: expression of RANTES, macrophage inflammatory protein (MIP)-1alpha, MIP-1beta, and gamma-interferon-inducible protein-10 by macrophages, lymphocytes, endothelial cells, and granulomas. Inflamm Bowel Dis. 1996; 2:88–96. PMID: 23282513.
Article
40. Uguccioni M, Gionchetti P, Robbiani DF, et al. Increased expression of IP-10, IL-8, MCP-1, and MCP-3 in ulcerative colitis. Am J Pathol. 1999; 155:331–336. PMID: 10433925.
Article
41. Kaser A, Ludwiczek O, Holzmann S, et al. Increased expression of CCL20 in human inflammatory bowel disease. J Clin Immunol. 2004; 24:74–85. PMID: 14997037.
Article
42. Mitsuyama K, Toyonaga A, Sasaki E, et al. IL-8 as an important chemoattractant for neutrophils in ulcerative colitis and Crohn's disease. Clin Exp Immunol. 1994; 96:432–436. PMID: 8004812.
Article
43. Zenewicz LA, Antov A, Flavell RA. CD4 T-cell differentiation and inflammatory bowel disease. Trends Mol Med. 2009; 15:199–207. PMID: 19362058.
Article
44. Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol. 2007; 8:942–949. PMID: 17676045.
45. Zhou L, Ivanov II, Spolski R, et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol. 2007; 8:967–974. PMID: 17581537.
46. Gálvez J. Role of Th17 cells in the pathogenesis of human IBD. ISRN Inflamm. 2014; 2014:928461. PMID: 25101191.
47. Yang XO, Panopoulos AD, Nurieva R, et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem. 2007; 282:9358–9363. PMID: 17277312.
48. Lathrop SK, Bloom SM, Rao SM, et al. Peripheral education of the immune system by colonic commensal microbiota. Nature. 2011; 478:250–254. PMID: 21937990.
49. Venema K. Role of gut microbiota in the control of energy and carbohydrate metabolism. Curr Opin Clin Nutr Metab Care. 2010; 13:432–438. PMID: 20531179.
50. Asquith M, Powrie F. An innately dangerous balancing act: intestinal homeostasis, inflammation, and colitis-associated cancer. J Exp Med. 2010; 207:1573–1577. PMID: 20679404.
Article
51. Manichanh C, Rigottier-Gois L, Bonnaud E, et al. Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut. 2006; 55:205–211. PMID: 16188921.
Article
52. Lepage P, Häsler R, Spehlmann ME, et al. Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology. 2011; 141:227–236. PMID: 21621540.
Article
53. Guarner F, Bourdet-Sicard R, Brandtzaeg P, et al. Mechanisms of disease: the hygiene hypothesis revisited. Nat Clin Pract Gastroenterol Hepatol. 2006; 3:275–284. PMID: 16673007.
Article
54. Ivanov II, Atarashi K, Manel N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009; 139:485–498. PMID: 19836068.
Article
55. Wu S, Rhee KJ, Albesiano E, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 2009; 15:1016–1022. PMID: 19701202.
Article
56. Ivanov II, Frutos Rde L, Manel N, et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe. 2008; 4:337–349. PMID: 18854238.
Article
57. Atarashi K, Nishimura J, Shima T, et al. ATP drives lamina propria T(H)17 cell differentiation. Nature. 2008; 455:808–812. PMID: 18716618.
Article
58. Kamada N, Núñez G. Role of the gut microbiota in the development and function of lymphoid cells. J Immunol. 2013; 190:1389–1395. PMID: 23378581.
Article
59. Murphy KM, Stockinger B. Effector T cell plasticity: flexibility in the face of changing circumstances. Nat Immunol. 2010; 11:674–680. PMID: 20644573.
Article
60. Seiderer J, Elben I, Diegelmann J, et al. Role of the novel Th17 cytokine IL-17F in inflammatory bowel disease (IBD): upregulated colonic IL-17F expression in active Crohn's disease and analysis of the IL17F p.His161Arg polymorphism in IBD. Inflamm Bowel Dis. 2008; 14:437–445. PMID: 18088064.
Article
61. Kobayashi T, Okamoto S, Hisamatsu T, et al. IL23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn's disease. Gut. 2008; 57:1682–1689. PMID: 18653729.
Article
62. Raza A, Shata MT. Letter: pathogenicity of Th17 cells may differ in ulcerative colitis compared with Crohn's disease. Aliment Pharmacol Ther. 2012; 36:204. PMID: 22703461.
Article
63. Thompson AI, Lees CW. Genetics of ulcerative colitis. Inflamm Bowel Dis. 2011; 17:831–848. PMID: 21319274.
Article
64. Biancheri P, Powell N, Monteleone G, Lord G, MacDonald TT. The challenges of stratifying patients for trials in inflammatory bowel disease. Trends Immunol. 2013; 34:564–571. PMID: 24035478.
Article
65. Ogawa A, Andoh A, Araki Y, Bamba T, Fujiyama Y. Neutralization of interleukin-17 aggravates dextran sulfate sodium-induced colitis in mice. Clin Immunol. 2004; 110:55–62. PMID: 14962796.
Article
66. Garrido-Mesa N, Utrilla P, Comalada M, et al. The association of minocycline and the probiotic Escherichia coli Nissle 1917 results in an additive beneficial effect in a DSS model of reactivated colitis in mice. Biochem Pharmacol. 2011; 82:1891–1900. PMID: 21930116.
Article
67. Yang XO, Chang SH, Park H, et al. Regulation of inflammatory responses by IL-17F. J Exp Med. 2008; 205:1063–1075. PMID: 18411338.
Article
68. Wedebye Schmidt EG, Larsen HL, Kristensen NN, et al. TH17 cell induction and effects of IL-17A and IL-17F blockade in experimental colitis. Inflamm Bowel Dis. 2013; 19:1567–1576. PMID: 23689808.
Article
69. Omenetti S, Pizarro TT. The Treg/Th17 axis: a dynamic balance regulated by the gut microbiome. Front Immunol. 2015; 6:639. PMID: 26734006.
Article
70. Brand S. Crohn's disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn's disease. Gut. 2009; 58:1152–1167. PMID: 19592695.
Article
71. Boden EK, Snapper SB. Regulatory T cells in inflammatory bowel disease. Curr Opin Gastroenterol. 2008; 24:733–741. PMID: 19125486.
Article
72. Wirtz S, Neurath MF. Mouse models of inflammatory bowel disease. Adv Drug Deliv Rev. 2007; 59:1073–1083. PMID: 17825455.
Article
73. Chaudhry A, Samstein RM, Treuting P, et al. Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity. 2011; 34:566–578. PMID: 21511185.
Article
74. Geem D, Harusato A, Flannigan K, Denning TL. Harnessing regulatory T cells for the treatment of inflammatory bowel disease. Inflamm Bowel Dis. 2015; 21:1409–1418. PMID: 25793328.
Article
75. Boehm F, Martin M, Kesselring R, et al. Deletion of Foxp3+ regulatory T cells in genetically targeted mice supports development of intestinal inflammation. BMC Gastroenterol. 2012; 12:97. PMID: 22849659.
Article
76. Huber S, Schramm C, Lehr HA, et al. Cutting edge: TGF-beta signaling is required for the in vivo expansion and immunosuppressive capacity of regulatory CD4+CD25+ T cells. J Immunol. 2004; 173:6526–6531. PMID: 15557141.
Article
77. Rubtsov YP, Rasmussen JP, Chi EY, et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity. 2008; 28:546–558. PMID: 18387831.
Article
78. Maloy KJ, Salaun L, Cahill R, Dougan G, Saunders NJ, Powrie F. CD4+CD25+ T(R) cells suppress innate immune pathology through cytokine-dependent mechanisms. J Exp Med. 2003; 197:111–119. PMID: 12515818.
Article
79. Uhlig HH, Coombes J, Mottet C, et al. Characterization of Foxp3+CD4+CD25+ and IL-10-secreting CD4+CD25+ T cells during cure of colitis. J Immunol. 2006; 177:5852–5860. PMID: 17056509.
Article
80. Collins CB, Aherne CM, McNamee EN, et al. Flt3 ligand expands CD103+ dendritic cells and FoxP3+ T regulatory cells, and attenuates Crohn's-like murine ileitis. Gut. 2012; 61:1154–1162. PMID: 22068168.
Article
81. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006; 441:235–238. PMID: 16648838.
Article
82. Xu L, Kitani A, Fuss I, Strober W. Cutting edge: regulatory T cells induce CD4+CD25−Foxp3−T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta. J Immunol. 2007; 178:6725–6729. PMID: 17513718.
Article
83. de Beaucoudrey L, Puel A, Filipe-Santos O, et al. Mutations in STAT3 and IL-12RB1 impair the development of human IL-17-producing T cells. J Exp Med. 2008; 205:1543–1550. PMID: 18591412.
Article
84. Ogino H, Nakamura K, Ihara E, Akiho H, Takayanagi R. CD4+CD25+ regulatory T cells suppress Th17-responses in an experimental colitis model. Dig Dis Sci. 2011; 56:376–386. PMID: 20521112.
Article
85. Becker C, Dornhoff H, Neufert C, et al. Cutting edge: IL-23 cross-regulates IL-12 production in T cell-dependent experimental colitis. J Immunol. 2006; 177:2760–2764. PMID: 16920909.
Article
86. Yen D, Cheung J, Scheerens H, et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest. 2006; 116:1310–1316. PMID: 16670770.
Article
87. Stolfi C, Rizzo A, Franzè E, et al. Involvement of interleukin-21 in the regulation of colitis-associated colon cancer. J Exp Med. 2011; 208:2279–2290. PMID: 21987656.
Article
88. Fitzpatrick LR, Small JS, Doblhofer R, Ammendola A. Vidofludimus inhibits colonic interleukin-17 and improves hapten-induced colitis in rats by a unique dual mode of action. J Pharmacol Exp Ther. 2012; 342:850–860. PMID: 22691298.
Article
89. Herrlinger KR, Diculescu M, Fellermann K, et al. Efficacy, safety and tolerability of vidofludimus in patients with inflammatory bowel disease: the ENTRANCE study. J Crohns Colitis. 2013; 7:636–643. PMID: 23078909.
Article
90. Zhang Z, Zheng M, Bindas J, Schwarzenberger P, Kolls JK. Critical role of IL-17 receptor signaling in acute TNBS-induced colitis. Inflamm Bowel Dis. 2006; 12:382–388. PMID: 16670527.
Article
91. Hueber W, Sands BE, Lewitzky S, et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn's disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut. 2012; 61:1693–1700. PMID: 22595313.
Article
92. McLean LP, Cross RK, Shea-Donohue T. Combined blockade of IL-17A and IL-17F may prevent the development of experimental colitis. Immunotherapy. 2013; 5:923–925. PMID: 23998727.
Article
93. Fitzpatrick LR. Inhibition of IL-17 as a pharmacological approach for IBD. Int Rev Immunol. 2013; 32:544–555. PMID: 23886112.
Article
94. Klotz L, Burgdorf S, Dani I, et al. The nuclear receptor PPAR gamma selectively inhibits Th17 differentiation in a T cell-intrinsic fashion and suppresses CNS autoimmunity. J Exp Med. 2009; 206:2079–2089. PMID: 19737866.
Article
95. Hontecillas R, Horne WT, Climent M, et al. Immunoregulatory mechanisms of macrophage PPAR-gamma in mice with experimental inflammatory bowel disease. Mucosal Immunol. 2011; 4:304–313. PMID: 21068720.
Article
96. Kim JK, Lee SH, Lee SY, et al. Grim19 attenuates DSS induced colitis in an animal model. PLoS One. 2016; 11:e0155853. DOI: 10.1371/journal.pone.0155853. PMID: 27258062.
Article
97. Spits H, Cupedo T. Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu Rev Immunol. 2012; 30:647–675. PMID: 22224763.
Article
98. Klose CS, Flach M, Möhle L, et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell. 2014; 157:340–356. PMID: 24725403.
Article
99. Fallon PG, Ballantyne SJ, Mangan NE, et al. Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J Exp Med. 2006; 203:1105–1116. PMID: 16606668.
Article
100. Reynders A, Yessaad N, Vu Manh TP, et al. Identity, regulation and in vivo function of gut NKp46+RORgammat+ and NKp46+RORgammat-lymphoid cells. EMBO J. 2011; 30:2934–2947. PMID: 21685873.
Article
101. Satoh-Takayama N, Vosshenrich CA, Lesjean-Pottier S, et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity. 2008; 29:958–970. PMID: 19084435.
Article
102. Gladiator A, Wangler N, Trautwein-Weidner K, LeibundGut-Landmann S. Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection. J Immunol. 2013; 190:521–525. PMID: 23255360.
Article
103. Sonnenberg GF, Monticelli LA, Elloso MM, Fouser LA, Artis D. CD4(+) lymphoid tissue-inducer cells promote innate immunity in the gut. Immunity. 2011; 34:122–134. PMID: 21194981.
Article
104. Takatori H, Kanno Y, Watford WT, et al. Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J Exp Med. 2009; 206:35–41. PMID: 19114665.
Article
105. Sanos SL, Bui VL, Mortha A, et al. RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat Immunol. 2009; 10:83–91. PMID: 19029903.
Article
106. Buonocore S, Ahern PP, Uhlig HH, et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature. 2010; 464:1371–1375. PMID: 20393462.
Article
107. Powell N, Walker AW, Stolarczyk E, et al. The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells. Immunity. 2012; 37:674–684. PMID: 23063332.
Article
108. Garrett WS, Lord GM, Punit S, et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell. 2007; 131:33–45. PMID: 17923086.
Article
109. Garrett WS, Punit S, Gallini CA, et al. Colitis-associated colorectal cancer driven by T-bet deficiency in dendritic cells. Cancer Cell. 2009; 16:208–219. PMID: 19732721.
Article
110. Geremia A, Arancibia-Cárcamo CV, Fleming MP, et al. IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J Exp Med. 2011; 208:1127–1133. PMID: 21576383.
Article
111. Bernink JH, Peters CP, Munneke M, et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat Immunol. 2013; 14:221–229. PMID: 23334791.
Article
112. Fuchs A, Vermi W, Lee JS, et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-gamma-producing cells. Immunity. 2013; 38:769–781. PMID: 23453631.
Article
113. Vonarbourg C, Mortha A, Bui VL, et al. Regulated expression of nuclear receptor RORgmamat confers distinct functional fates to NK cell receptor-expressing RORgammat(+) innate lymphocytes. Immunity. 2010; 33:736–751. PMID: 21093318.
Article
114. Bailey JR, Bland PW, Tarlton JF, et al. IL-13 promotes collagen accumulation in Crohn's disease fibrosis by down-regulation of fibroblast MMP synthesis: a role for innate lymphoid cells? PLoS One. 2012; 7:e52332. DOI: 10.1371/journal.pone.0052332. PMID: 23300643.
Article
115. Ermann J, Staton T, Glickman JN, de Waal Malefyt R, Glimcher LH, et al. Nod/Ripk2 signaling in dendritic cells activates IL-17A-secreting innate lymphoid cells and drives colitis in T-bet−/−.Rag2−/− (TRUC) mice. Proc Natl Acad Sci U S A. 2014; 111:E2559–E2566. PMID: 24927559.
116. Longman RS, Diehl GE, Victorio DA, et al. CX3CR1+ mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J Exp Med. 2014; 211:1571–1583. PMID: 25024136.
Article
117. Kamada N, Hisamatsu T, Okamoto S, et al. Unique CD14 intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-gamma axis. J Clin Invest. 2008; 118:2269–2280. PMID: 18497880.
118. Ogino T, Nishimura J, Barman S, et al. Increased Th17-inducing activity of CD14+ CD163 low myeloid cells in intestinal lamina propria of patients with Crohn's disease. Gastroenterology. 2013; 145:1380–1391.e1. PMID: 23993972.
Article
119. Mizuno S, Mikami Y, Kamada N, et al. Cross-talk between RORgammat+ innate lymphoid cells and intestinal macrophages induces mucosal IL-22 production in Crohn's disease. Inflamm Bowel Dis. 2014; 20:1426–1434. PMID: 24991784.
120. Mortha A, Chudnovskiy A, Hashimoto D, et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science. 2014; 343:1249288. PMID: 24625929.
121. Neill DR, Wong SH, Bellosi A, et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature. 2010; 464:1367–1370. PMID: 20200518.
122. Hepworth MR, Monticelli LA, Fung TC, et al. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature. 2013; 498:113–117. PMID: 23698371.
123. Sonnenberg GF, Fouser LA, Artis D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat Immunol. 2011; 12:383–390. PMID: 21502992.
124. Goto Y, Panea C, Nakato G, et al. Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation. Immunity. 2014; 40:594–607. PMID: 24684957.
Article
125. Magri G, Miyajima M, Bascones S, et al. Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. Nat Immunol. 2014; 15:354–364. PMID: 24562309.
126. Cella M, Fuchs A, Vermi W, et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature. 2009; 457:722–725. PMID: 18978771.
127. Goto Y, Obata T, Kunisawa J, et al. Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science. 2014; 345:1254009. PMID: 25214634.
Article
128. Pham TA, Clare S, Goulding D, et al. Epithelial IL-22RA1-mediated fucosylation promotes intestinal colonization resistance to an opportunistic pathogen. Cell Host Microbe. 2014; 16:504–516. PMID: 25263220.
Article
129. Desreumaux P, Romano O. 5-Aminosalicylates and colorectal cancer: preventive role in chronic inflammatory bowel disease? Gastroenterol Clin Biol. 2004; 28:509. PMID: 15243337.
130. Rousseaux C, Lefebvre B, Dubuquoy L, et al. Intestinal antiinflammatory effect of 5-aminosalicylic acid is dependent on peroxisome proliferator-activated receptor-gamma. J Exp Med. 2005; 201:1205–1215. PMID: 15824083.
Article
131. Allgayer H. Review article: mechanisms of action of mesalazine in preventing colorectal carcinoma in inflammatory bowel disease. Aliment Pharmacol Ther. 2003; 18(Suppl 2):10–14. PMID: 12950415.
Article
132. Velayos FS, Terdiman JP, Walsh JM. Effect of 5-aminosalicylate use on colorectal cancer and dysplasia risk: a systematic review and metaanalysis of observational studies. Am J Gastroenterol. 2005; 100:1345–1353. PMID: 15929768.
Article
133. Lim WC, Wang Y, MacDonald JK, Hanauer S. Aminosalicylates for induction of remission or response in Crohn's disease. Cochrane Database Syst Rev. 2016; 7:CD008870. DOI: 10.1002/14651858.CD008870. PMID: 27372735.
Article
134. Danese S, Fiocchi C. Ulcerative colitis. N Engl J Med. 2011; 365:1713–1725. PMID: 22047562.
Article
135. Oakley RH, Cidlowski JA. The biology of the glucocorticoid receptor: new signaling mechanisms in health and disease. J Allergy Clin Immunol. 2013; 132:1033–1044. PMID: 24084075.
Article
136. Rezaie A, Kuenzig ME, Benchimol EI, et al. Budesonide for induction of remission in Crohn's disease. Cochrane Database Syst Rev. 2015; (6):CD000296. DOI: 10.1002/14651858.CD000296.pub4. PMID: 26039678.
Article
137. Tiede I, Fritz G, Strand S, et al. CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes. J Clin Invest. 2003; 111:1133–1145. PMID: 12697733.
Article
138. D'Haens G, Geboes K, Ponette E, Penninckx F, Rutgeerts P. Healing of severe recurrent ileitis with azathioprine therapy in patients with Crohn's disease. Gastroenterology. 1997; 112:1475–1481. PMID: 9136824.
139. Colombel JF, Sandborn WJ, Reinisch W, et al. Infliximab, azathioprine, or combination therapy for Crohn's disease. N Engl J Med. 2010; 362:1383–1395. PMID: 20393175.
Article
140. Feagan BG, Fedorak RN, Irvine EJ, et al. North American Crohn's Study Group Investigators. A comparison of methotrexate with placebo for the maintenance of remission in Crohn's disease. N Engl J Med. 2000; 342:1627–1632. PMID: 10833208.
Article
141. Feuerstein JD, Akbari M, Tapper EB, Cheifetz AS. Systematic review and meta-analysis of third-line salvage therapy with infliximab or cyclosporine in severe ulcerative colitis. Ann Gastroenterol. 2016; 29:341–347. PMID: 27366036.
Article
142. Steiner S, Daniel C, Fischer A, et al. Cyclosporine A regulates pro-inflammatory cytokine production in ulcerative colitis. Arch Immunol Ther Exp (Warsz). 2015; 63:53–63. PMID: 25155925.
Article
143. Matsuda S, Koyasu S. Mechanisms of action of cyclosporine. Immunopharmacology. 2000; 47:119–125. PMID: 10878286.
Article
144. Nielsen CH, Albertsen L, Bendtzen K, Baslund B. Methotrexate induces poly(ADP-ribose) polymerase-dependent, caspase 3-independent apoptosis in subsets of proliferating CD4+ T cells. Clin Exp Immunol. 2007; 148:288–295. PMID: 17286800.
Article
145. Wessels JA, Huizinga TW, Guchelaar HJ. Recent insights in the pharmacological actions of methotrexate in the treatment of rheumatoid arthritis. Rheumatology (Oxford). 2008; 47:249–255. PMID: 18045808.
Article
146. Glatzer T, Killig M, Meisig J, et al. RORgammat+ innate lymphoid cells acquire a proinflammatory program upon engagement of the activating receptor NKp44. Immunity. 2013; 38:1223–1235. PMID: 23791642.
Article
147. Hanauer SB, Feagan BG, Lichtenstein GR, et al. Maintenance infliximab for Crohn's disease: the ACCENT I randomised trial. Lancet. 2002; 359:1541–1549. PMID: 12047962.
Article
148. Panaccione R, Ghosh S, Middleton S, et al. Combination therapy with infliximab and azathioprine is superior to monotherapy with either agent in ulcerative colitis. Gastroenterology. 2014; 146:392–400.e3. PMID: 24512909.
Article
149. Biancheri P, Brezski RJ, Di Sabatino A, et al. Proteolytic cleavage and loss of function of biologic agents that neutralize tumor necrosis factor in the mucosa of patients with inflammatory bowel disease. Gastroenterology. 2015; 149:1564–1574.e3. PMID: 26170138.
Article
150. Van den Brande JM, Koehler TC, Zelinkova Z, et al. Prediction of antitumour necrosis factor clinical efficacy by real-time visualisation of apoptosis in patients with Crohn's disease. Gut. 2007; 56:509–517. PMID: 17082252.
Article
151. Ghosh S, Goldin E, Gordon FH, et al. Natalizumab for active Crohn's disease. N Engl J Med. 2003; 348:24–32. PMID: 12510039.
Article
152. Sandborn WJ, Colombel JF, Enns R, et al. Natalizumab induction and maintenance therapy for Crohn's disease. N Engl J Med. 2005; 353:1912–1925. PMID: 16267322.
Article
153. Targan SR, Feagan BG, Fedorak RN, et al. Natalizumab for the treatment of active Crohn's disease: results of the ENCORE trial. Gastroenterology. 2007; 132:1672–1683. PMID: 17484865.
Article
154. Van Assche G, Van Ranst M, Sciot R, et al. Progressive multifocal leukoencephalopathy after natalizumab therapy for Crohn's disease. N Engl J Med. 2005; 353:362–368. PMID: 15947080.
Article
155. Warnke C, Menge T, Hartung HP, et al. Natalizumab and progressive multifocal leukoencephalopathy: what are the causal factors and can it be avoided? Arch Neurol. 2010; 67:923–930. PMID: 20697042.
156. Bloomgren G, Richman S, Hotermans C, et al. Risk of natalizumab-associated progressive multifocal leukoencephalopathy. N Engl J Med. 2012; 366:1870–1880. PMID: 22591293.
Article
157. Munneke JM, Bjorklund AT, Mjosberg JM, et al. Activated innate lymphoid cells are associated with a reduced susceptibility to graft-versus-host disease. Blood. 2014; 124:812–821. PMID: 24855210.
Article
158. Fischer A, Zundler S, Atreya R, et al. Differential effects of alpha4beta7 and GPR15 on homing of effector and regulatory T cells from patients with UC to the inflamed gut in vivo. Gut. 2016; 65:1642–1664. PMID: 26209553.
Article
159. Feagan BG, Rutgeerts P, Sands BE, et al. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2013; 369:699–710. PMID: 23964932.
Article
160. Sandborn WJ, Feagan BG, Rutgeerts P, et al. Vedolizumab as induction and maintenance therapy for Crohn's disease. N Engl J Med. 2013; 369:711–721. PMID: 23964933.
Article
161. Wyant T, Leach T, Sankoh S, et al. Vedolizumab affects antibody responses to immunisation selectively in the gastrointestinal tract: randomised controlled trial results. Gut. 2015; 64:77–83. PMID: 24763133.
Article
162. Lam MC, Bressler B. Vedolizumab for ulcerative colitis and Crohn's disease: results and implications of GEMINI studies. Immunotherapy. 2014; 6:963–971. PMID: 25341118.
Article
163. Stallmach A, Langbein C, Atreya R, et al. Vedolizumab provides clinical benefit over 1 year in patients with active inflammatory bowel disease: a prospective multicenter observational study. Aliment Pharmacol Ther. 2016; 44:1199–1212. PMID: 27714831.
Article
164. Zundler S, Schillinger D, Fischer A, et al. Blockade of alpha-Ebeta7 integrin suppresses accumulation of CD8+ and Th9 lymphocytes from patients with IBD in the inflamed gut in vivo. Gut. 2017; 66:1936–1948. PMID: 27543429.
Article
165. Vermeire S, O'Byrne S, Keir M, et al. Etrolizumab as induction therapy for ulcerative colitis: a randomised, controlled, phase 2 trial. Lancet. 2014; 384:309–318. PMID: 24814090.
Article
166. Rutgeerts PJ, Fedorak RN, Hommes DW, et al. Randomised phase I study of etrolizumab (rhuMAb beta7) in moderate to severe ulcerative colitis. Gut. 2013; 62:1122–1130. PMID: 22717454.
Article
167. Gonzalez-Cabrera PJ, Brown S, Studer SM, Rosen H. S1P signaling: new therapies and opportunities. F1000Prime Rep. 2014; 6:109. PMID: 25580263.
Article
168. Deguchi Y, Andoh A, Yagi Y, et al. The S1P receptor modulator FTY720 prevents the development of experimental colitis in mice. Oncol Rep. 2006; 16:699–703. PMID: 16969482.
Article
169. Degagné E, Saba JD. S1pping fire: sphingosine-1-phosphate signaling as an emerging target in inflammatory bowel disease and colitis-associated cancer. Clin Exp Gastroenterol. 2014; 7:205–214. PMID: 25061328.
170. Sandborn WJ, Feagan BG, Wolf DC, et al. Ozanimod induction and maintenance treatment for ulcerative colitis. N Engl J Med. 2016; 374:1754–1762. PMID: 27144850.
Article
171. Gilead terminates phase 2/3 study of GS-5745 in patients with ulcerative colitis. Gilead Science, Inc.;Accessed July 12, 2017. http://www.gilead.com/news/press-releases/2016/9/gilead-terminates-phase-23-study-of-gs5745-in-patients-with-ulcerative-colitis .
172. Suzuki K, Yokoyama J, Kawauchi Y, et al. Phase 1 clinical study of siRNA targeting carbohydrate sulphotransferase 15 in Crohn's disease patients with active mucosal lesions. J Crohns Colitis. 2017; 11:221–228. PMID: 27484097.
Article
173. Reinisch W, Hommes DW, Van Assche G, et al. A dose escalating, placebo controlled, double blind, single dose and multidose, safety and tolerability study of fontolizumab, a humanised anti-interferon gamma antibody, in patients with moderate to severe Crohn's disease. Gut. 2006; 55:1138–1144. PMID: 16492717.
Article
174. Maxwell JR, Zhang Y, Brown WA, et al. Differential roles for interleukin-23 and interleukin-17 in intestinal immunoregulation. Immunity. 2015; 43:739–750. PMID: 26431947.
Article
175. Atreya R, Mudter J, Finotto S, et al. Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in Crohn disease and experimental colitis in vivo. Nat Med. 2000; 6:583–588. PMID: 10802717.
Article
176. Ito H, Takazoe M, Fukuda Y, et al. A pilot randomized trial of a human anti-interleukin-6 receptor monoclonal antibody in active Crohn's disease. Gastroenterology. 2004; 126:989–996. PMID: 15057738.
Article
177. Fuss IJ, Becker C, Yang Z, et al. Both IL-12p70 and IL-23 are synthesized during active Crohn's disease and are down-regulated by treatment with anti-IL-12 p40 monoclonal antibody. Inflamm Bowel Dis. 2006; 12:9–15. PMID: 16374252.
Article
178. Monteleone G, Biancone L, Marasco R, et al. Interleukin 12 is expressed and actively released by Crohn's disease intestinal lamina propria mononuclear cells. Gastroenterology. 1997; 112:1169–1178. PMID: 9098000.
Article
179. Sandborn WJ, Feagan BG, Fedorak RN, et al. A randomized trial of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with moderate-to-severe Crohn's disease. Gastroenterology. 2008; 135:1130–1141. PMID: 18706417.
Article
180. Sandborn WJ, Gasink C, Gao LL, et al. Ustekinumab induction and maintenance therapy in refractory Crohn's disease. N Engl J Med. 2012; 367:1519–1528. PMID: 23075178.
Article
181. Kock K, Pan WJ, Gow JM, et al. Preclinical development of AMG 139, a human antibody specifically targeting IL-23. Br J Pharmacol. 2015; 172:159–172. PMID: 25205227.
Article
182. Sandborn WJ, Ghosh S, Panes J, et al. A phase 2 study of tofacitinib, an oral Janus kinase inhibitor, in patients with Crohn's disease. Clin Gastroenterol Hepatol. 2014; 12:1485–1493.e2. PMID: 24480677.
183. Sandborn WJ, Ghosh S, Panes J, et al. Tofacitinib, an oral Janus kinase inhibitor, in active ulcerative colitis. N Engl J Med. 2012; 367:616–624. PMID: 22894574.
Article
184. Mazur M, Karczewski J, Lodyga M, Żaba R, Adamski Z. Inhibitors of phosphodiesterase 4 (PDE 4): a new therapeutic option in the treatment of psoriasis vulgaris and psoriatic arthritis. J Dermatolog Treat. 2015; 26:326–328. PMID: 25424050.
Article
Full Text Links
  • IR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr