Nat Prod Sci.  2017 Dec;23(4):306-309. 10.20307/nps.2017.23.4.306.

Microbial Transformation of Two Prenylated Naringenins

Affiliations
  • 1College of Pharmacy and Research Institute of Drug Development, Chonnam National University,Gwangju 61186, Republic of Korea. islee@chonnam.ac.kr

Abstract

Microbial transformation of (±)-6-(1,1-dimethylallyl)naringenin (6-DMAN, 1) and (±)-5-(O-prenyl) naringenin-4"²,7-diacetate (5-O-PN, 2) was performed by using fungi. Scale-up fermentation studies with Mucor hiemalis, Cunninghamella elegans var. elegans, and Penicillium chrysogenum led to the isolation of five microbial metabolites. Chemical structures of the metabolites were determined by spectral analyses as (±)-8-prenylnaringenin (3), (2S)-5,4"²-dihydroxy-7,8-[(R)-2-(1-hydroxy-1-methylethyl)-2,3-dihydrofurano]flavanone (4), (±)-5-(O-prenyl)naringenin-4"²-acetate (5), (±)-naringenin-4"²-acetate (6), and (±)-naringenin (7), of which 5 was identified as a new compound.

Keyword

Microbial transformation; 6-(1,1-dimethylallyl)naringenin; 5-(O-prenyl)naringenin-4′; 7-diacetate; Mucor hiemalis; Cunninghamella elegans var. elegans; Penicillium chrysogenum

MeSH Terms

Cunninghamella
Fermentation
Fungi
Mucor
Penicillium chrysogenum

Figure

  • Fig. 1 Chemical structures of the compounds 1–7.


Reference

1. Sumathi R, Tamizharasi S, Sivakumar T. Int J Curr Adv Res. 2015; 4:234–236.
2. Ruh MF, Zacharewski T, Connor K, Howell J, Chen I, Safe S. Biochem Pharmacol. 1995; 50:1485–1493.
3. Zierau O, Gester S, Schwab P, Metz P, Kolba S, Wulf M, Vollmer G. Planta Med. 2002; 68:449–451.
4. Meiyanto E, Hermawan A, Anindyajati . Asian Pac J Cancer Prev. 2012; 13:427–436.
5. Assini JM, Mulvihill EE, Huff MW. Curr Opin Lipidol. 2013; 24:34–40.
6. Zierau O, Hamann J, Tischer S, Schwab P, Metz P, Vollmer G, Gutzeit HO, Scholz S. Biochem Biophys Res Commun. 2005; 326:909–916.
7. Seo EK, Silva GL, Chai HB, Chagwedera TE, Farnsworth NR, Cordell GA, Pezzuto JM, Kinghorn AD. Phytochemistry. 1997; 45:509–515.
8. Zierau O, Morrissey C, Watson RWG, Schwab P, Kolba S, Metz P, Vollmer G. Planta Med. 2003; 69:856–858.
9. Tokalov SV, Henker Y, Schwab P, Metz P, Gutzeit HO. Pharmacology. 2004; 71:46–56.
10. Clark AM, McChesney JD, Hufford CD. Med Res Rev. 1985; 5:231–253.
Article
11. Han F, Lee IS. Phytochem Lett. 2016; 18:136–139.
12. Han F, Lee IS. Nat Prod Res. 2017; 31:883–889.
13. Gester S, Metz P, Zierau O, Vollmer G. Tetrahedron. 2001; 57:1015–1018.
14. Kim HJ, Kim SH, Kang BY, Lee IS. Arch Pharm Res. 2008; 31:1241–1246.
15. Tahara S, Ingham JL, Mizutani J. Agric Biol Chem. 1987; 51:211–216.
16. Jang DS, Cuendet M, Hawthorne ME, Kardono LBS, Kawanishi K, Fong HHS, Mehta RG, Pezzuto JM, Kinghorn AD. Phytochemistry. 2002; 61:867–872.
17. Kyriakou E, Primikyri A, Charisiadis P, Katsoura M, Gerothanassis IP, Stamatis H, Tzakos AG. Org Biomol Chem. 2012; 10:1739–1742.
18. Maltese F, Erkelens C, van der Kooy F, Choi YH, Verpoorte R. Food Chem. 2009; 116:575–579.
Full Text Links
  • NPS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr