1. Peiris JS, Guan Y, Yuen KY. Severe acute respiratory syndrome. Nat Med. 2004; 10:12 Suppl. S88–S97.
Article
2. Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team. Dawood FS, Jain S, Finelli L, Shaw MW, Lindstrom S, et al. Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N Engl J Med. 2009; 360(25):2605–2615.
Article
3. Shin SY, Seo DW, An J, Kwak H, Kim SH, Gwack J, et al. High correlation of Middle East respiratory syndrome spread with Google search and Twitter trends in Korea. Sci Rep. 2016; 6:32920.
Article
4. Henning KJ. What is syndromic surveillance? MMWR Suppl. 2004; 53:5–11.
Article
5. Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L. Detecting influenza epidemics using search engine query data. Nature. 2009; 457(7232):1012–1014.
Article
6. Triple S Project. Assessment of syndromic surveillance in Europe. Lancet. 2011; 378(9806):1833–1834.
7. Eysenbach G. Infodemiology: tracking flu-related searches on the web for syndromic surveillance. AMIA Annu Symp Proc. 2006; 2006:244–248.
8. Cho S, Sohn CH, Jo MW, Shin SY, Lee JH, Ryoo SM, et al. Correlation between national influenza surveillance data and google trends in South Korea. PLoS One. 2013; 8(12):e81422.
Article
9. Seo DW, Jo MW, Sohn CH, Shin SY, Lee J, Yu M, et al. Cumulative query method for influenza surveillance using search engine data. J Med Internet Res. 2014; 16(12):e289.
Article
10. Hulth A, Rydevik G, Linde A. Web queries as a source for syndromic surveillance. PLoS One. 2009; 4(2):e4378.
Article
16. Shin SY, Kim T, Seo DW, Sohn CH, Kim SH, Ryoo SM, et al. Correlation between National Influenza Surveillance Data and Search Queries from Mobile Devices and Desktops in South Korea. PLoS One. 2016; 11(7):e0158539.
Article
17. Signorini A, Segre AM, Polgreen PM. The use of Twitter to track levels of disease activity and public concern in the U.S. during the influenza A H1N1 pandemic. PLoS One. 2011; 6(5):e19467.
Article
18. GNIP 2.0 [Internet]. San Francisco (CA): Twitter Inc.;c2017. cited at 2017 Jul 8. Available from:
https://gnip.com.
20. Lazer D, Kennedy R, King G, Vespignani A. The parable of Google Flu: traps in big data analysis. Science. 2014; 343(6176):1203–1205.
Article