1. Soares RO, Fedi AC, Reiter KC, Caierão J, d’Azevedo PA. Correlation between biofilm formation and
gelE, esp, and
agg genes in
Enterococcus spp. Clinical isolates. Virulence. 2014; 5:634–637.
Article
2. Lee Y, Kim YA, Song W, Lee H, Lee HS, Jang SJ, Jeong SH, Hong SG, Yong D, Lee K, Chong Y. KONSAR Group. Recent trends in antimicrobial resistance in intensive care units in Korea. Korean J Nosocomial Infect Control. 2014; 19:29–36.
Article
3. Shankar N, Lockatell CV, Baghdayan AS, Drachenberg C, Gilmore MS, Johnson DE. Role of
Enterococcus faecalis surface protein Esp in the pathogenesis of ascending urinary tract infection. Infect Immun. 2001; 69:4366–4372.
Article
4. Creti R, Imperi M, Bertuccini L, Fabretti F, Orefici G, Di Rosa R, Baldassarri L. Survey for virulence determinants among
Enterococcus faecalis isolated from different sources. J Med Microbiol. 2004; 53:13–20.
Article
5. Chow JW, Thal LA, Perri MB, Vazquez JA, Donabedian SM, Clewell DB, Zervos MJ. Plasmid-associated hemolysin and aggregation substance production contribute to virulence in experimental enterococcal endocarditis. Antimicrob Agents Chemother. 1993; 37:2474–2477.
Article
6. Donelli G, Guaglianone E. Emerging role of Enterococcus spp in catheter-related infections: biofilm formation and novel mechanisms of antibiotic resistance. J Vasc Access. 2004; 5:3–9.
Article
7. Duprè I, Zanetti S, Schito AM, Fadda G, Sechi LA. Incidence of virulence determinants in clinical
Enterococcus faecium and
Enterococcus faecalis isolates collected in Sardinia (Italy). J Med Microbiol. 2003; 52:491–498.
Article
8. Facklam RR, Collins MD. Identification of
Enterococcus species isolated from human infections by a conventional test scheme. J Clin Microbiol. 1989; 27:731–734.
Article
9. Dutka-Malen S, Evers S, Courvalin P. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J Clin Microbiol. 1995; 33:24–27.
Article
10. Clinical and Labratory Standard Institute (CLSI). Performance standards for antimicrobial susceptibility testing. 25th informational supplement. Wayne, PA: CLSI;2015. p. M100–S23.
11. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012; 18:268–281.
Article
12. Marra A, Dib-Hajj F, Lamb L, Kaczmarek F, Shang W, Beckius G, Milici AJ, Medina I, Gootz TD. Enterococcal virulence determinants may be involved in resistance to clinical therapy. Diagn Microbiol Infect Dis. 2007; 58:59–65.
Article
13. Franz CM, Muscholl-Silberhorn AB, Yousif NM, Vancanneyt M, Swings J, Holzapfel WH. Incidence of virulence factors and antibiotic resistance among Enterococci isolated from food. Appl Environ Microbiol. 2001; 67:4385–4389.
Article
14. Tsikrikonis G, Maniatis AN, Labrou M, Ntokou E, Michail G, Daponte A, Stathopoulos C, Tsakris A, Pournaras S. Differences in biofilm formation and virulence factors between clinical and fecal enterococcal isolates of human and animal origin. Microb Pathog. 2012; 52:336–343.
Article
15. Dutka-Malen S, Evers S, Courvalin P. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J Clin Microbiol. 1995; 33:24–27.
Article
16. Vankerckhoven V, Van Autgaerden T, Vael C, Lammens C, Chapelle S, Rossi R, Jabes D, Goossens H. Development of a multiplex PCR for the detection of
asa1, gelE, cylA, esp, and
hyl genes in enterococci and survey for virulence determinants among European hospital isolates of
Enterococcus faecium
. J Clin Microbiol. 2004; 42:4473–4479.
Article
17. Sharifi Y, Hasani A, Ghotaslou R, Varshochi M, Hasani A, Soroush MH, Aghazadeh M, Milani M. Vancomycin-resistant enterococci among clinical isolates from north-west Iran: identification of therapeutic surrogates. J Med Microbiol. 2012; 61:600–602.
Article
18. Prabaker K, Weinstein RA. Trends in antimicrobial resistance in intensive care units in the United States. Curr Opin Crit Care. 2011; 17:472–479.
Article
19. Cetinkaya Y, Falk P, Mayhall CG. Vancomycin-resistant enterococci. Clin Microbiol Rev. 2000; 13:686–707.
Article
20. Peacock SJ, Moore CE, Justice A, Kantzanou M, Story L, Mackie K, O'Neill G, Day NP. Virulent combinations of adhesin and toxin genes in natural populations of
Staphylococcus aureus
. Infect Immun. 2002; 70:4987–4996.
Article
21. Baldassarri L, Creti R, Recchia S, Pataracchia M, Alfarone G, Orefici G, Campoccia D, Montanaro L, Arciola CR. Virulence factors in enterococcal infections of orthopedic devices. Int J Artif Organs. 2006; 29:402–406.
Article
22. Di Rosa R, Creti R, Venditti M, D'Amelio R, Arciola CR, Montanaro L, Baldassarri L. Relationship between biofilm formation, the enterococcal surface protein (Esp) and gelatinase in clinical isolates of Enterococcus faecalis and Enterococcus faecium
. FEMS Microbiol Lett. 2006; 256:145–150.
23. Mohamed JA, Huang W, Nallapareddy SR, Teng F, Murray BE. Influence of origin of isolates, especially endocarditis isolates, and various genes on biofilm formation by
Enterococcus faecalis
. Infect Immun. 2004; 72:3658–3663.
Article
24. Johansson D, Rasmussen M. Virulence factors in isolates of
Enterococcus faecalis from infective endocarditis and from the normal flora. Microb Pathog. 2013; 55:28–31.
Article
25. Tendolkar PM, Baghdayan AS, Gilmore MS, Shankar N. Enterococcal surface protein, Esp, enhances biofilm formation by
Enterococcus faecalis
. Infect Immun. 2004; 72:6032–6039.
Article
26. Toledo-Arana A, Valle J, Solano C, Arrizubieta MJ, Cucarella C, Lamata M, Amorena B, Leiva J, Penadés JR, Lasa I. The enterococcal surface protein, Esp, is involved in
Enterococcus faecalis biofilm formation. Appl Environ Microbiol. 2001; 67:4538–4545.
Article
27. Mohamed JA, Murray BE. Lack of correlation of gelatinase production and biofilm formation in a large collection of
Enterococcus faecalis isolates. J Clin Microbiol. 2005; 43:5405–5407.
Article
28. Kafil HS, Mobarez AM. Assessment of biofilm formation by enterococci isolates from urinary tract infections with different virulence profiles. J King Saud Univ Sci. 2015; 27:312–317.
Article
29. Hufnagel M, Koch S, Creti R, Baldassarri L, Huebner J. A putative sugar-binding transcriptional regulator in a novel gene locus in
Enterococcus faecalis contributes to production of biofilm and prolonged bacteremia in mice. J Infect Dis. 2004; 189:420–430.
Article
30. Xu Y, Murray BE, Weinstock GM. A cluster of genes involved in polysaccharide biosynthesis from
Enterococcus faecalis OG1RF. Infect Immun. 1998; 66:4313–4323.
Article
31. Xu Y, Singh KV, Qin X, Murray BE, Weinstock GM. Analysis of a gene cluster of
Enterococcus faecalis involved in polysaccharide biosynthesis. Infect Immun. 2000; 68:815–823.
Article
32. Dworniczek E, Piwowarczyk J, Bania J, Kowalska-Krochmal B, Walecka E. Seniuk ADolna I, Gościniak G.
Enterococcus in wound infections: virulence and antimicrobial resistance. Acta Microbiol Immunol Hung. 2012; 59:263–269.
Article
33. Ballering KS, Kristich CJ, Grindle SM, Oromendia A, Beattie DT, Dunny GM. Functional genomics of
Enterococcus faecalis: multiple novel genetic determinants for biofilm formation in the core genome. J Bacteriol. 2009; 191:2806–2814.
Article
34. Roberts JC, Singh KV, Okhuysen PC, Murray BE. Molecular epidemiology of the fsr locus and of gelatinase production among different subsets of
Enterococcus faecalis isolates. J Clin Microbiol. 2004; 42:2317–2320.
Article
35. Strzelecki J, Hryniewicz W, Sadowy E. Gelatinase-associated phenotypes and genotypes among clinical isolates of
Enterococcus faecalis in Poland. Pol J Microbiol. 2011; 60:287–292.
Article
36. Nakayama J, Kariyama R, Kumon H. Description of a 23.9-kilobase chromosomal deletion containing a region encoding fsr genes which mainly determines the gelatinase-negative phenotype of clinical isolates of
Enterococcus faecalis in urine. Appl Environ Microbiol. 2002; 68:3152–3155.
Article
37. Domann E, Hain T, Ghai R, Billion A, Kuenne C, Zimmermann K, Chakraborty T. Comparative genomic analysis for the presence of potential enterococcal virulence factors in the probiotic
Enterococcus faecalis strain Symbioflor 1. Int J Med Microbiol. 2007; 297:533–539.
Article
38. Eaton TJ, Gasson MJ. Molecular screening of
Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol. 2001; 67:1628–1635.
Article
39. Archimbaud C, Shankar N, Forestier C, Baghdayan A, Gilmore MS, Charbonné F, Joly B. In vitro adhesive properties and virulence factors of
Enterococcus faecalis strains. Res Microbiol. 2002; 153:75–80.
Article
40. Schroeder M, Brooks BD, Brooks AE. The complex relationship between virulence and antibiotic resistance. Genes (Basel). 2017; 8:39.
Article