1. Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development. CPT Pharmacometrics Syst Pharmacol. 2012; 1:e6. DOI:
10.1038/psp.2012.4. PMID:
23835886.
Article
2. Lee JY, Garnett CE, Gobburu JV, Bhattaram VA, Brar S, Earp JC, et al. Impact of pharmacometric analyses on new drug approval and labelling decisions: a review of 198 submissions between 2000 and 2008. Clin Pharmacokinet. 2011; 50:627–635. DOI:
10.2165/11593210-000000000-00000. PMID:
21895036.
3. Wang Y, Bhattaram AV, Jadhav PR, Lesko LJ, Madabushi R, Powell JR, et al. Leveraging prior quantitative knowledge to guide drug development decisions and regulatory science recommendations: impact of FDA pharmacometrics during 2004-2006. J Clin Pharmacol. 2008; 48:146–156. DOI:
10.1177/0091270007311111. PMID:
18199891.
Article
4. Lesko LJ, Schmidt S. Individualization of drug therapy: history, present state, and opportunities for the future. Clin Pharmacol Ther. 2012; 92:458–466. DOI:
10.1038/clpt.2012.113. PMID:
22948891.
Article
5. Trivedi A, Lee RE, Meibohm B. Applications of pharmacometrics in the clinical development and pharmacotherapy of anti-infectives. Expert Rev Clin Pharmacol. 2013; 6:159–170. DOI:
10.1586/ecp.13.6. PMID:
23473593.
Article
6. Holford NH, Sheiner LB. Understanding the dose-effect relationship: clinical application of pharmacokinetic-pharmacodynamic models. Clin Pharmacokinet. 1981; 6:429–453. PMID:
7032803.
7. Dayneka NL, Garg V, Jusko WJ. Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm. 1993; 21:457–478. PMID:
8133465.
Article
8. Mould DR, Denman NG, Duffull S. Using disease progression models as a tool to detect drug effect. Clin Pharmacol Ther. 2007; 82:81–86. PMID:
17507925.
Article
9. Goutelle S, Maurin M, Rougier F, Barbaut X, Bourguignon L, Ducher M, et al. The Hill equation: a review of its capabilities in pharmacological modelling. Fundam Clin Pharmacol. 2008; 22:633–648. DOI:
10.1111/j.1472-8206.2008.00633.x. PMID:
19049668.
Article
10. Girgis S, Pai SM, Girgis IG, Batra VK. Pharmacodynamic parameter estimation: population size versus number of samples. AAPS J. 2005; 7:46. PMID:
16353905.
Article
11. Pai SM, Girgis S, Batra VK, Girgis IG. Population pharmacodynamic parameter estimation from sparse sampling: effect of sigmoidicity on parameter estimates. AAPS J. 2009; 11:535–540. DOI:
10.1208/s12248-009-9131-2. PMID:
19629711.
Article
12. Sun H, Ette EI, Ludden TM. On the recording of sample times and parameter estimation from repeated measures pharmacokinetic data. J Pharmacokinet Biopharm. 1996; 24:637–650. PMID:
9300354.
Article
13. Ette EI, Chu HM, Godfrey CJ. Data supplementation: a pharmacokinetic/ pharmacodynamic knowledge creation approach for characterizing an unexplored region of the response surface. Pharm Res. 2005; 22:523–531. PMID:
15846459.
14. Dutta S, Matsumoto Y, Ebling WF. Is it possible to estimate the parameters of the sigmoid Emax model with truncated data typical of clinical studies? J Pharm Sci. 1996; 85:232–239. PMID:
8683454.
Article
15. Dragalin V, Hsuan F, Padmanabhan SK. Adaptive designs for dose-finding studies based on sigmoid Emax model. J Biopharm Stat. 2007; 17:1051–1070. PMID:
18027216.
16. Wang TH, Yang M. Adaptive optimal designs for dose-finding studies based on sigmoid E-max models. J Stat Plan Inference. 2014; 144:188–197.
Article
17. Zhang L, Beal SL, Sheiner LB. Simultaneous vs. sequential analysis for population PK/PD data I: best-case performance. J Pharmacokinet Pharmacodyn. 2003; 30:387–404. PMID:
15000421.
Article