Korean J Crit Care Med.  2017 May;32(2):205-210. 10.4266/kjccm.2017.00150.

The Role of Transbronchial Lung Biopsy in Diagnosing Pulmonary Mucormycosis in a Critical Care Unit

Affiliations
  • 1Department of Internal Medicine, Kangwon National University Hospital, Chuncheon, Korea.
  • 2Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea. pjk3318@gmail.com

Abstract

BACKGROUND
Pulmonary mucormycosis (PM) is an emerging infectious disease and a life-threatening infection with high mortality. The clinical outcomes of PM have not improved significantly over the last decade because early diagnosis of PM is difficult and antifungal agents show limited activity. We evaluated the clinical manifestations of PM in a Korean tertiary hospital and identified the role of transbronchial lung biopsy (TBLB) in diagnosing PM in patients admitted to an intensive care unit.
METHODS
The medical records of adult patients (aged 16 years and older) who met the criteria for proven or probable PM in a Korean tertiary hospital were retrospectively reviewed from January 2003 to December 2013. The clinical features, computed tomographic findings, diagnostic methods, treatment, and outcomes in patients with PM were evaluated.
RESULTS
Of the nine patients, four were male. The median age was 64 years (range, 12 to 73 years). PM was proven and probable in seven and two cases, respectively. Computed tomography findings of PM were unilateral involvement in eight cases (89%), consolidation in eight (89%), ground glass opacity in four (44%), and reverse halo sign in one (11%). Six of nine cases (67%) were diagnosed as PM from TBLB via portable bronchoscopy. There were no complications after TBLB. Mortality rate was 56% (five of nine cases).
CONCLUSIONS
TBLB can be an easy and useful technique for diagnosing PM in the intensive care unit.

Keyword

biopsy; bronchoscopy; intensive care units; mucormycosis

MeSH Terms

Adult
Antifungal Agents
Biopsy*
Bronchoscopy
Communicable Diseases, Emerging
Critical Care*
Early Diagnosis
Glass
Humans
Intensive Care Units
Lung*
Male
Medical Records
Mortality
Mucormycosis*
Retrospective Studies
Tertiary Care Centers
Antifungal Agents

Reference

References

1. Garcia-Hermoso D, Dannaoui E, Lortholary O, Dromer F. Agents of systemic and subcutaneous mucormycosis and entomophthoromycosis. In : Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW, editors. Manual of clinical microbiology. 10th ed. Washington, DC: ASM Press;2011. p. 1880–901.
2. Kontoyiannis DP, Lionakis MS, Lewis RE, Chamilos G, Healy M, Perego C, et al. Zygomycosis in a tertiary-care cancer center in the era of Aspergillus-active antifungal therapy: a case-control observational study of 27 recent cases. J Infect Dis. 2005; 191:1350–60.
3. Ibrahim AS, Spellberg B, Walsh TJ, Kontoyiannis DP. Pathogenesis of mucormycosis. Clin Infect Dis. 2012; 54 Suppl 1:S16–22.
Article
4. Riley TT, Muzny CA, Swiatlo E, Legendre DP. Breaking the mold: a review of mucormycosis and current pharmacological treatment options. Ann Pharmacother. 2016; 50:747–57.
5. Pagano L, Offidani M, Fianchi L, Nosari A, Candoni A, Picardi M, et al. Mucormycosis in hematologic patients. Haematologica. 2004; 89:207–14.
6. Roden MM, Zaoutis TE, Buchanan WL, Knudsen TA, Sarkisova TA, Schaufele RL, et al. Epidemiology and outcome of zygomycosis: a review of 929 reported cases. Clin Infect Dis. 2005; 41:634–53.
Article
7. Hamilos G, Samonis G, Kontoyiannis DP. Pulmonary mucormycosis. Semin Respir Crit Care Med. 2011; 32:693–702.
Article
8. Rees JR, Pinner RW, Hajjeh RA, Brandt ME, Reingold AL. The epidemiological features of invasive mycotic infections in the San Francisco Bay area, 1992-1993: results of population-based laboratory active surveillance. Clin Infect Dis. 1998; 27:1138–47.
Article
9. Jung J, Kim MY, Lee HJ, Park YS, Lee SO, Choi SH, et al. Comparison of computed tomographic findings in pulmonary mucormycosis and invasive pulmonary aspergillosis. Clin Microbiol Infect. 2015; 21:684.e11–8.
Article
10. al-Abbadi MA, Russo K, Wilkinson EJ. Pulmonary mucormycosis diagnosed by bronchoalveolar lavage: a case report and review of the literature. Pediatr Pulmonol. 1997; 23:222–5.
Article
11. Sharma S, Gupta P, Gupta N, Lal A, Behera D, Rajwanshi A. Pulmonary infections in immunocompromised patients: the role of image-guided fine needle aspiration cytology. Cytopathology. 2017; 28:46–54.
Article
12. De Pauw B, Walsh TJ, Donnelly JP, Stevens DA, Edwards JE, Calandra T, et al. Revised definitions of invasive fungal disease from the European organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis. 2008; 46:1813–21.
Article
13. Kim YI, Kang HC, Lee HS, Choi JS, Seo KH, Kim YH, et al. Invasive pulmonary mucormycosis with concomitant lung cancer presented with massive hemoptysis by huge pseudoaneurysm of pulmonary artery. Ann Thorac Surg. 2014; 98:1832–5.
14. Neto FM, Camargo PC, Costa AN, Teixeira RH, Carraro RM, Afonso JE Jr, et al. Fungal infection by Mucorales order in lung transplantation: 4 case reports. Transplant Proc. 2014; 46:1849–51.
15. McAdams HP, Rosado de Christenson M, Strollo DC, Patz EF Jr. Pulmonary mucormycosis: radiologic findings in 32 cases. AJR Am J Roentgenol. 1997; 168:1541–8.
Article
16. Jamadar DA, Kazerooni EA, Daly BD, White CS, Gross BH. Pulmonary zygomycosis: CT appearance. J Comput Assist Tomogr. 1995; 19:733–8.
17. Walsh TJ, Gamaletsou MN, McGinnis MR, Hayden RT, Kontoyiannis DP. Early clinical and laboratory diagnosis of invasive pulmonary, extrapulmonary, and disseminated mucormycosis (zygomycosis). Clin Infect Dis. 2012; 54 Suppl 1:S55–60.
Article
18. Almyroudis NG, Sutton DA, Fothergill AW, Rinaldi MG, Kusne S. In vitro susceptibilities of 217 clinical isolates of zygomycetes to conventional and new antifungal agents. Antimicrob Agents Chemother. 2007; 51:2587–90.
Article
19. Drogari-Apiranthitou M, Mantopoulou FD, Skiada A, Kanioura L, Grammatikou M, Vrioni G, et al. In vitro antifungal susceptibility of filamentous fungi causing rare infections: synergy testing of amphotericin B, posaconazole and anidulafungin in pairs. J Antimicrob Chemother. 2012; 67:1937–40.
Article
20. Lamaris GA, Ben-Ami R, Lewis RE, Chamilos G, Samonis G, Kontoyiannis DP. Increased virulence of Zygomycetes organisms following exposure to voriconazole: a study involving fly and murine models of zygomycosis. J Infect Dis. 2009; 199:1399–406.
Article
21. Schneidawind D, Nann D, Vogel W, Faul C, Fend F, Horger M, et al. Allogeneic hematopoietic cell transplantation in patients with acute myeloid leukemia and pulmonary mucormycosis. Transpl Infect Dis. 2012; 14:E166–72.
Article
22. Fitzpatrick MC, Carter BW. Pulmonary mucormycosis complicating cutaneous blastic plasmacytoid dendritic cell neoplasm. Proc (Bayl Univ Med Cent). 2012; 25:287–8.
Article
23. Serio B, Rosamilio R, Giudice V, Zeppa P, Esposito S, Fontana R, et al. Successful management of pulmonary mucormycosis with liposomal amphotericin B and surgery treatment: a case report. Infez Med. 2012; 20 Suppl 2:43–7.
Full Text Links
  • KJCCM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr