Clin Nutr Res.  2017 Apr;6(2):68-80. 10.7762/cnr.2017.6.2.68.

Measurement Methods for Physical Activity and Energy Expenditure: a Review

Affiliations
  • 1Department of Food and Nutrition, Gangneung-Wonju National University, Gangneung 25457, Korea. ekkim@gwnu.ac.kr

Abstract

Physical activity is defined as any bodily movement produced by skeletal muscles that results in energy expenditure. The benefits of physical activity for health maintenance have been well documented, especially in the prevention and management of chronic diseases. Therefore, accurate measurement of physical activity and energy expenditure is essential both for epidemiological studies and in the clinical context. Given the large number of available methods, it is important to have an understanding of each, especially when one needs to choose a technique to use. The purpose of this review was to discuss the components of total energy expenditure and present advantage and limitations of different methods of physical activity and energy expenditure assessment.

Keyword

Physical activity; Energy expenditure; Methods

MeSH Terms

Chronic Disease
Energy Metabolism*
Epidemiologic Studies
Methods*
Motor Activity*
Muscle, Skeletal

Cited by  5 articles

Validation of dietary reference intake equations for estimating energy requirements in Korean adults by using the doubly labeled water method
Eun-Kyung Kim, Jae-Hee Kim, Myung-Hee Kim, Didace Ndahimana, Seo-Eun Yean, Jin-Sook Yoon, Jung-Hyun Kim, Jonghoon Park, Kazuko Ishikawa-Takata
Nutr Res Pract. 2017;11(4):300-306.    doi: 10.4162/nrp.2017.11.4.300.

Validity of predictive equations for resting energy expenditure in Korean non-obese adults
Didace Ndahimana, Yeon-Jung Choi, Jung-Hye Park, Mun-Jeong Ju, Eun-Kyung Kim
Nutr Res Pract. 2018;12(4):283-290.    doi: 10.4162/nrp.2018.12.4.283.

Validity of the dietary reference intakes for determining energy requirements in older adults
Didace Ndahimana, Na-Young Go, Kazuko Ishikawa-Takata, Jonghoon Park, Eun-Kyung Kim
Nutr Res Pract. 2019;13(3):256-262.    doi: 10.4162/nrp.2019.13.3.256.

Amounts of physical activity and sedentary behavior patterns in older adults: using an accelerometer and a physical activity diary
Na-Young Go, Didace Ndahimana, Eun-Kyung Kim
J Nutr Health. 2019;52(1):36-46.    doi: 10.4163/jnh.2019.52.1.36.

Energy cost of walking in older adults: accuracy of the ActiGraph accelerometer predictive equations
Didace Ndahimana, Ye-Jin Kim, Cui-Sang Wang, Eun-Kyung Kim
Nutr Res Pract. 2022;16(5):565-576.    doi: 10.4162/nrp.2022.16.5.565.


Reference

1. Low WY, Lee YK, Samy AL. Non-communicable diseases in the Asia-Pacific region: prevalence, risk factors and community-based prevention. Int J Occup Med Environ Health. 2015; 28:20–26. PMID: 26159943.
Article
2. Beavis AL, Smith AJ, Fader AN. Lifestyle changes and the risk of developing endometrial and ovarian cancers: opportunities for prevention and management. Int J Womens Health. 2016; 8:151–167. PMID: 27284267.
3. Kirkham AA, Davis MK. Exercise prevention of cardiovascular disease in breast cancer survivors. J Oncol. 2015; 2015:917606. PMID: 26339243.
Article
4. Hamasaki H. Daily physical activity and type 2 diabetes: a review. World J Diabetes. 2016; 7:243–251. PMID: 27350847.
Article
5. Alves AJ, Viana JL, Cavalcante SL, Oliveira NL, Duarte JA, Mota J, Oliveira J, Ribeiro F. Physical activity in primary and secondary prevention of cardiovascular disease: overview updated. World J Cardiol. 2016; 8:575–583. PMID: 27847558.
Article
6. Welk GJ. Physical activity assessments for health-related research. Champaign (IL): Human Kinetics;2002.
7. Rolfes SR, Pinna K, Whitney EN. Understanding normal and clinical nutrition. 9th ed. Belmont (CA): Wadsworth, Cengage Learning;2012.
8. Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 1985; 100:126–131. PMID: 3920711.
9. Pinheiro Volp AC, Esteves de Oliveira FC, Duarte Moreira Alves R, Esteves EA, Bressan J. Energy expenditure: components and evaluation methods. Nutr Hosp. 2011; 26:430–440. PMID: 21892558.
10. Nelms M, Sucher KP, Lacey K, Roth SL. Nutrition therapy and pathophysiology. 2nd ed. Belmont (CA): Wadsworth, Cengage Learning;2011.
11. Sparti A, DeLany JP, de la Bretonne JA, Sander GE, Bray GA. Relationship between resting metabolic rate and the composition of the fat-free mass. Metabolism. 1997; 46:1225–1230. PMID: 9322812.
Article
12. de la Torre CL, Ramírez-Marrero FA, Martínez LR, Nevárez C. Predicting resting energy expenditure in healthy Puerto Rican adults. J Am Diet Assoc. 2010; 110:1523–1526. PMID: 20869491.
Article
13. Tooze JA, Schoeller DA, Subar AF, Kipnis V, Schatzkin A, Troiano RP. Total daily energy expenditure among middle-aged men and women: the OPEN Study. Am J Clin Nutr. 2007; 86:382–387. PMID: 17684209.
Article
14. Webb P. Energy expenditure and fat-free mass in men and women. Am J Clin Nutr. 1981; 34:1816–1826. PMID: 7282608.
Article
15. Frisard MI, Broussard A, Davies SS, Roberts LJ 2nd, Rood J, de Jonge L, Fang X, Jazwinski SM, Deutsch WA, Ravussin E; Louisiana Healthy Aging Study. Aging, resting metabolic rate, and oxidative damage: results from the Louisiana Healthy Aging Study. J Gerontol A Biol Sci Med Sci. 2007; 62:752–759. PMID: 17634323.
Article
16. Krems C, Lührmann PM, Strassburg A, Hartmann B, Neuhäuser-Berthold M. Lower resting metabolic rate in the elderly may not be entirely due to changes in body composition. Eur J Clin Nutr. 2005; 59:255–262. PMID: 15494736.
Article
17. Martin CK, Heilbronn LK, de Jonge L, DeLany JP, Volaufova J, Anton SD, Redman LM, Smith SR, Ravussin E. Effect of calorie restriction on resting metabolic rate and spontaneous physical activity. Obesity (Silver Spring). 2007; 15:2964–2973. PMID: 18198305.
Article
18. Maclean PS, Bergouignan A, Cornier MA, Jackman MR. Bioliology's response to dieting: the impetus for weight regain. Am J Physiol Regul Integr Comp Physiol. 2011; 301:R581–R600. PMID: 21677272.
19. Gropper SA, Smith JL. Advanced nutrition and human metabolism. 6th ed. Belmont (CA): Wadsworth, Cengage Learning;2013.
20. Institute of Medicine, Panel on Macronutrients (US). Institute of Medicine, Standing Committee on the Scientific Evaluation of Dietary Reference Intakes (US). Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. Washington, D.C.: National Academies Press;2002.
21. Park J, Kazuko IT, Kim E, Kim J, Yoon J. Estimating free-living human energy expenditure: practical aspects of the doubly labeled water method and its applications. Nutr Res Pract. 2014; 8:241–248. PMID: 24944767.
Article
22. Ndahimana D, Lee SH, Kim YJ, Son HR, Ishikawa-Takata K, Park J, Kim EK. Accuracy of dietary reference intake predictive equation for estimated energy requirements in female tennis athletes and non-athlete college students: comparison with the doubly labeled water method. Nutr Res Pract. 2017; 11:51–56. PMID: 28194265.
Article
23. Colbert LH, Matthews CE, Havighurst TC, Kim K, Schoeller DA. Comparative validity of physical activity measures in older adults. Med Sci Sports Exerc. 2011; 43:867–876. PMID: 20881882.
Article
24. Wong WW, Roberts SB, Racette SB, Das SK, Redman LM, Rochon J, Bhapkar MV, Clarke LL, Kraus WE. The doubly labeled water method produces highly reproducible longitudinal results in nutrition studies. J Nutr. 2014; 144:777–783. PMID: 24523488.
Article
25. International Atomic Energy Agency (AT). Assessment of body composition and total energy expenditure in humans using stable isotope techniques. Vienna: International Atomic Energy Agency;2009.
26. Gondolf UH, Tetens I, Hills AP, Michaelsen KF, Trolle E. Validation of a pre-coded food record for infants and young children. Eur J Clin Nutr. 2012; 66:91–96. PMID: 21829216.
Article
27. Jones PJ, Winthrop AL, Schoeller DA, Swyer PR, Smith J, Filler RM, Heim T. Validation of doubly labeled water for assessing energy expenditure in infants. Pediatr Res. 1987; 21:242–246. PMID: 3104873.
Article
28. Butte NF, Wong WW, Treuth MS, Ellis KJ, O'Brian Smith E. Energy requirements during pregnancy based on total energy expenditure and energy deposition. Am J Clin Nutr. 2004; 79:1078–1087. PMID: 15159239.
Article
29. Butte NF, King JC. Energy requirements during pregnancy and lactation. Public Health Nutr. 2005; 8:1010–1027. PMID: 16277817.
Article
30. Calabro MA, Kim Y, Franke WD, Stewart JM, Welk GJ. Objective and subjective measurement of energy expenditure in older adults: a doubly labeled water study. Eur J Clin Nutr. 2015; 69:850–855. PMID: 25351651.
Article
31. St-Onge MP, Roberts AL, Chen J, Kelleman M, O'Keeffe M. RoyChoudhury A, Jones PJ. Short sleep duration increases energy intakes but does not change energy expenditure in normal-weight individuals. Am J Clin Nutr. 2011; 94:410–416. PMID: 21715510.
32. Cooper JA, Manini TM, Paton CM, Yamada Y, Everhart JE, Cummings S, Mackey DC, Newman AB, Glynn NW, Tylavsky F, Harris T, Schoeller DA. Health ABC study. Longitudinal change in energy expenditure and effects on energy requirements of the elderly. Nutr J. 2013; 12:73. PMID: 23742706.
Article
33. Trabulsi J, Troiano RP, Subar AF, Sharbaugh C, Kipnis V, Schatzkin A, Schoeller DA. Precision of the doubly labeled water method in a large-scale application: evaluation of a streamlined-dosing protocol in the Observing Protein and Energy Nutrition (OPEN) study. Eur J Clin Nutr. 2003; 57:1370–1377. PMID: 14576749.
Article
34. Zhuo Q, Sun R, Gou LY, Piao JH, Liu JM, Tian Y, Zhang YH, Yang XG. Total energy expenditure of 16 Chinese young men measured by the doubly labeled water method. Biomed Environ Sci. 2013; 26:413–420. PMID: 23816574.
35. Butte NF, Wong WW, Wilson TA, Adolph AL, Puyau MR, Zakeri IF. Revision of Dietary Reference Intakes for energy in preschool-age children. Am J Clin Nutr. 2014; 100:161–167. PMID: 24808489.
Article
36. Salazar G, Vásquez F, Rodríguez MP, Andrade AM, Anziani MA, Vio F, Coward W. Energy expenditure and intake comparisons in Chilean children 4–5 years attending day-care centres. Nutr Hosp. 2015; 32:1067–1074. PMID: 26319822.
37. Leonard WR. Laboratory and field methods for measuring human energy expenditure. Am J Hum Biol. 2012; 24:372–384. PMID: 22419374.
Article
38. Frankenfield D, Roth-Yousey L, Compher C. Comparison of predictive equations for resting metabolic rate in healthy nonobese and obese adults: a systematic review. J Am Diet Assoc. 2005; 105:775–789. PMID: 15883556.
Article
39. Kaiyala KJ, Ramsay DS. Direct animal calorimetry, the underused gold standard for quantifying the fire of life. Comp Biochem Physiol A Mol Integr Physiol. 2011; 158:252–264. PMID: 20427023.
Article
40. Zhang WS. Construction, calibration and testing of a decimeter-size heat-flow calorimeter. Thermochim Acta. 2010; 499:128–132.
Article
41. Webster JD, Welsh G, Pacy P, Garrow JS. Description of a human direct calorimeter, with a note on the energy cost of clerical work. Br J Nutr. 1986; 55:1–6. PMID: 3663568.
Article
42. Levine JA. Measurement of energy expenditure. Public Health Nutr. 2005; 8:1123–1132. PMID: 16277824.
Article
43. Snellen JW, Chang KS, Smith W. Technical description and performance characteristics of a human whole-body calorimeter. Med Biol Eng Comput. 1983; 21:9–20. PMID: 6865517.
Article
44. Hopker JG, Jobson SA, Gregson HC, Coleman D, Passfield L. Reliability of cycling gross efficiency using the Douglas bag method. Med Sci Sports Exerc. 2012; 44:290–296. PMID: 21796054.
Article
45. Horner NK, Lampe JW, Patterson RE, Neuhouser ML, Beresford SA, Prentice RL. Indirect calorimetry protocol development for measuring resting metabolic rate as a component of total energy expenditure in free-living postmenopausal women. J Nutr. 2001; 131:2215–2218. PMID: 11481420.
Article
46. National Guideline Clearinghouse (US). Energy expenditure: measuring resting metabolic rate (RMR) in the healthy and non-critically ill evidence-based nutrition practice guideline. Rockville (MD): Agency for Healthcare Research and Quality;2014.
47. Schrack JA, Simonsick EM, Ferrucci L. Comparison of the Cosmed K4b(2) portable metabolic system in measuring steady-state walking energy expenditure. PLoS One. 2010; 5:e9292. PMID: 20174583.
Article
48. Weir JB. New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol. 1949; 109:1–9. PMID: 15394301.
Article
49. Walker RN, Heuberger RA. Predictive equations for energy needs for the critically ill. Respir Care. 2009; 54:509–521. PMID: 19327188.
50. Picolo MF, Lago AF, Menegueti MG, Nicolini EA, Basile-Filho A, Nunes AA, Martins-Filho OA, Auxiliadora-Martins M. Harris-Benedict equation and resting energy expenditure estimates in critically Ill ventilator patients. Am J Crit Care. 2016; 25:e21–e29. PMID: 26724304.
Article
51. Kruizenga HM, Hofsteenge GH, Weijs PJ. Predicting resting energy expenditure in underweight, normal weight, overweight, and obese adult hospital patients. Nutr Metab (Lond). 2016; 13:85. PMID: 27904645.
Article
52. Vanhelst J, Hurdiel R, Mikulovic J, Bui-Xuân G, Fardy P, Theunynck D, Béghin L. Validation of the Vivago Wrist-Worn accelerometer in the assessment of physical activity. BMC Public Health. 2012; 12:690. PMID: 22913286.
Article
53. Weijs PJ. Validity of predictive equations for resting energy expenditure in US and Dutch overweight and obese class I and II adults aged 18–65 y. Am J Clin Nutr. 2008; 88:959–970. PMID: 18842782.
Article
54. Neelemaat F. van Bokhorst-de van der Schueren MA, Thijs A, Seidell JC, Weijs PJ. Resting energy expenditure in malnourished older patients at hospital admission and three months after discharge: predictive equations versus measurements. Clin Nutr. 2012; 31:958–966. PMID: 22658444.
55. Crouter SE, Clowers KG, Bassett DR Jr. A novel method for using accelerometer data to predict energy expenditure. J Appl Physiol. 1985; 2006:1324–1331.
Article
56. Broderick JM, Ryan J, O'Donnell DM, Hussey J. A guide to assessing physical activity using accelerometry in cancer patients. Support Care Cancer. 2014; 22:1121–1130. PMID: 24389829.
Article
57. John D, Freedson P. ActiGraph and Actical physical activity monitors: a peek under the hood. Med Sci Sports Exerc. 2012; 44:S86–S89. PMID: 22157779.
58. Swartz AM, Strath SJ, Bassett DR Jr, O'Brien WL, King GA, Ainsworth BE. Estimation of energy expenditure using CSA accelerometers at hip and wrist sites. Med Sci Sports Exerc. 2000; 32:S450–S456. PMID: 10993414.
Article
59. Yngve A, Nilsson A, Sjostrom M, Ekelund U. Effect of monitor placement and of activity setting on the MTI accelerometer output. Med Sci Sports Exerc. 2003; 35:320–326. PMID: 12569223.
Article
60. Freedson PS, Melanson E, Sirard J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med Sci Sports Exerc. 1998; 30:777–781. PMID: 9588623.
Article
61. Brooks AG, Gunn SM, Withers RT, Gore CJ, Plummer JL. Predicting walking METs and energy expenditure from speed or accelerometry. Med Sci Sports Exerc. 2005; 37:1216–1223. PMID: 16015141.
Article
62. Rothney MP, Brychta RJ, Meade NN, Chen KY, Buchowski MS. Validation of the ActiGraph two-regression model for predicting energy expenditure. Med Sci Sports Exerc. 2010; 42:1785–1792. PMID: 20142778.
Article
63. Lyden K, Kozey SL, Staudenmeyer JW, Freedson PS. A comprehensive evaluation of commonly used accelerometer energy expenditure and MET prediction equations. Eur J Appl Physiol. 2011; 111:187–201. PMID: 20842375.
Article
64. Santos-Lozano A, Santín-Medeiros F, Cardon G, Torres-Luque G, Bailón R, Bergmeir C, Ruiz JR, Lucia A, Garatachea N. Actigraph GT3X: validation and determination of physical activity intensity cut points. Int J Sports Med. 2013; 34:975–982. PMID: 23700330.
Article
65. Sasaki JE, John D, Freedson PS. Validation and comparison of ActiGraph activity monitors. J Sci Med Sport. 2011; 14:411–416. PMID: 21616714.
Article
66. Hills AP, Mokhtar N, Byrne NM. Assessment of physical activity and energy expenditure: an overview of objective measures. Front Nutr. 2014; 1:5. PMID: 25988109.
Article
67. Sirard JR, Pate RR. Physical activity assessment in children and adolescents. Sports Med. 2001; 31:439–454. PMID: 11394563.
Article
68. Armstrong N. Young people's physical activity patterns as assessed by heart rate monitoring. J Sports Sci. 1998; 16(Suppl):S9–S16. PMID: 22587713.
Article
69. Schrack JA, Zipunnikov V, Goldsmith J, Bandeen-Roche K, Crainiceanu CM, Ferrucci L. Estimating energy expenditure from heart rate in older adults: a case for calibration. PLoS One. 2014; 9:e93520. PMID: 24787146.
Article
70. Ainslie P, Reilly T, Westerterp K. Estimating human energy expenditure: a review of techniques with particular reference to doubly labelled water. Sports Med. 2003; 33:683–698. PMID: 12846591.
71. Luke A, Maki KC, Barkey N, Cooper R, McGee D. Simultaneous monitoring of heart rate and motion to assess energy expenditure. Med Sci Sports Exerc. 1997; 29:144–148. PMID: 9000168.
Article
72. Montoye HJ, Kemper HC, Saris WH, Washburn RA. Measuring physical activity and energy expenditure. Champaign (IL): Human Kinetics;1996.
73. Ekelund U, Sjöström M, Yngve A, Nilsson A. Total daily energy expenditure and pattern of physical activity measured by minute-by-minute heart rate monitoring in 14–15 year old Swedish adolescents. Eur J Clin Nutr. 2000; 54:195–202. PMID: 10713740.
Article
74. Charlot K, Cornolo J, Borne R, Brugniaux JV, Richalet JP, Chapelot D, Pichon A. Improvement of energy expenditure prediction from heart rate during running. Physiol Meas. 2014; 35:253–266. PMID: 24434852.
Article
75. Giles D, Draper N, Neil W. Validity of the Polar V800 heart rate monitor to measure RR intervals at rest. Eur J Appl Physiol. 2016; 116:563–571. PMID: 26708360.
Article
76. Livingstone MB, Coward WA, Prentice AM, Davies PS, Strain JJ, McKenna PG, Mahoney CA, White JA, Stewart CM, Kerr MJ. Daily energy expenditure in free-living children: comparison of heart-rate monitoring with the doubly labeled water (2H2180) method. Am J Clin Nutr. 1992; 56:343–352. PMID: 1636613.
77. Brage S, Westgate K, Franks PW, Stegle O, Wright A, Ekelund U, Wareham NJ. Estimation of free-living energy expenditure by heart rate and movement sensing: a doubly-labelled water study. PLoS One. 2015; 10:e0137206. PMID: 26349056.
Article
78. Welk GJ, Differding JA, Thompson RW, Blair SN, Dziura J, Hart P. The utility of the Digi-walker step counter to assess daily physical activity patterns. Med Sci Sports Exerc. 2000; 32:S481–S488. PMID: 10993418.
Article
79. Crouter SE, Schneider PL, Karabulut M, Bassett DR Jr. Validity of 10 electronic pedometers for measuring steps, distance, and energy cost. Med Sci Sports Exerc. 2003; 35:1455–1460. PMID: 12900704.
Article
80. Thorup CB, Grønkjær M, Spindler H, Andreasen JJ, Hansen J, Dinesen BI, Nielsen G, Sørensen EE. Pedometer use and self-determined motivation for walking in a cardiac telerehabilitation program: a qualitative study. BMC Sports Sci Med Rehabil. 2016; 8:24. PMID: 27547404.
Article
81. Finkelstein EA, Tan YT, Malhotra R, Lee CF, Goh SS, Saw SM. A cluster randomized controlled trial of an incentive-based outdoor physical activity program. J Pediatr. 2013; 163:167–172.e1. PMID: 23415616.
Article
82. Pedersen BK, Saltin B. Evidence for prescribing exercise as therapy in chronic disease. Scand J Med Sci Sports. 2006; 16(Suppl 1):3–63. PMID: 16451303.
Article
83. Ara I, Aparicio-Ugarriza R, Morales-Barco D, Nascimento de Souza W, Mata E, González-Gross M. Physical activity assessment in the general population; validated self-report methods. Nutr Hosp. 2015; 31(Suppl 3):211–218. PMID: 25719788.
84. Neilson HK, Robson PJ, Friedenreich CM, Csizmadi I. Estimating activity energy expenditure: how valid are physical activity questionnaires? Am J Clin Nutr. 2008; 87:279–291. PMID: 18258615.
Article
85. Troiano RP, Berrigan D, Dodd KW, Mâsse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008; 40:181–188. PMID: 18091006.
Article
86. Tucker JM, Welk GJ, Beyler NK. Physical activity in U.S.: adults compliance with the Physical Activity Guidelines for Americans. Am J Prev Med. 2011; 40:454–461. PMID: 21406280.
87. Van Holle V, De Bourdeaudhuij I, Deforche B, Van Cauwenberg J, Van Dyck D. Assessment of physical activity in older Belgian adults: validity and reliability of an adapted interview version of the long International Physical Activity Questionnaire (IPAQ-L). BMC Public Health. 2015; 15:433. PMID: 25928561.
Article
88. Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, Pratt M, Ekelund U, Yngve A, Sallis JF, Oja P. International Physical Activity Questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003; 35:1381–1395. PMID: 12900694.
Article
89. Delshad M, Ghanbarian A, Ghaleh NR, Amirshekari G, Askari S, Azizi F. Reliability and validity of the modifiable activity questionnaire for an Iranian urban adolescent population. Int J Prev Med. 2015; 6:3. PMID: 25789138.
Article
90. Pettee Gabriel K, McClain JJ, Schmid KK, Storti KL, Ainsworth BE. Reliability and convergent validity of the past-week Modifiable Activity Questionnaire. Public Health Nutr. 2011; 14:435–442. PMID: 20843404.
Article
91. Golubic R, May AM, Benjaminsen Borch K, Overvad K, Charles MA, Diaz MJ, Amiano P, Palli D, Valanou E, Vigl M, Franks PW, Wareham N, Ekelund U, Brage S. Validity of electronically administered Recent Physical Activity Questionnaire (RPAQ) in ten European countries. PLoS One. 2014; 9:e92829. PMID: 24667343.
Article
92. Weston AT, Petosa R, Pate RR. Validation of an instrument for measurement of physical activity in youth. Med Sci Sports Exerc. 1997; 29:138–143. PMID: 9000167.
Article
93. Sylvia LG, Bernstein EE, Hubbard JL, Keating L, Anderson EJ. Practical guide to measuring physical activity. J Acad Nutr Diet. 2014; 114:199–208. PMID: 24290836.
Article
94. Troiano RP. Can there be a single best measure of reported physical activity? Am J Clin Nutr. 2009; 89:736–737. PMID: 19176725.
Article
Full Text Links
  • CNR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr