J Korean Assoc Oral Maxillofac Surg.  2017 Apr;43(2):63-69. 10.5125/jkaoms.2017.43.2.63.

The role of nuclear factor I-C in tooth and bone development

Affiliations
  • 1Department of Oral Histology-Developmental Biology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea. jcapark@snu.ac.kr

Abstract

Nuclear factor I-C (NFI-C) plays a pivotal role in various cellular processes such as odontoblast and osteoblast differentiation. Nfic-deficient mice showed abnormal tooth and bone formation. The transplantation of Nfic-expressing mouse bone marrow stromal cells rescued the impaired bone formation in Nfic(-/-) mice. Studies suggest that NFI-C regulate osteogenesis and dentinogenesis in concert with several factors including transforming growth factor-β1, Krüppel-like factor 4, and β-catenin. This review will focus on the function of NFI-C during tooth and bone formation and on the relevant pathways that involve NFI-C.

Keyword

Nuclear factor I-C; Dentinogenesis; Osteogenesis; Osteoporosis

MeSH Terms

Animals
Bone Development*
Dentinogenesis
Mesenchymal Stromal Cells
Mice
NFI Transcription Factors*
Odontoblasts
Osteoblasts
Osteogenesis
Osteoporosis
Tooth*
NFI Transcription Factors

Reference

1. Neunzehn J, Weber MT, Wittenburg G, Lauer G, Hannig C, Wiesmann HP. Dentin-like tissue formation and biomineralization by multicellular human pulp cell spheres in vitro. Head Face Med. 2014; 10:25. PMID: 24946771.
Article
2. Sowmya S, Chennazhi KP, Arzate H, Jayachandran P, Nair SV, Jayakumar R. Periodontal specific differentiation of dental follicle stem cells into osteoblast, fibroblast, and cementoblast. Tissue Eng Part C Methods. 2015; 21:1044–1058. PMID: 25962715.
Article
3. Chen X, Chen G, Feng L, Jiang Z, Guo W, Yu M, et al. Expression of Nfic during root formation in first mandibular molar of rat. J Mol Histol. 2014; 45:619–626. PMID: 25074584.
Article
4. Steele-Perkins G, Butz KG, Lyons GE, Zeichner-David M, Kim HJ, Cho MI, et al. Essential role for NFI-C/CTF transcription-replication factor in tooth root development. Mol Cell Biol. 2003; 23:1075–1084. PMID: 12529411.
Article
5. Park JC, Herr Y, Kim HJ, Gronostajski RM, Cho MI. Nfic gene disruption inhibits differentiation of odontoblasts responsible for root formation and results in formation of short and abnormal roots in mice. J Periodontol. 2007; 78:1795–1802. PMID: 17760551.
6. Nagata K, Guggenheimer RA, Hurwitz J. Adenovirus DNA replication in vitro: synthesis of full-length DNA with purified proteins. Proc Natl Acad Sci U S A. 1983; 80:4266–4270. PMID: 6308611.
Article
7. Nagata K, Guggenheimer RA, Enomoto T, Lichy JH, Hurwitz J. Adenovirus DNA replication in vitro: identification of a host factor that stimulates synthesis of the preterminal protein-dCMP complex. Proc Natl Acad Sci U S A. 1982; 79:6438–6442. PMID: 6216480.
Article
8. Gronostajski RM. Roles of the NFI/CTF gene family in transcription and development. Gene. 2000; 249:31–45. PMID: 10831836.
Article
9. Gronostajski RM, Adhya S, Nagata K, Guggenheimer RA, Hurwitz J. Site-specific DNA binding of nuclear factor I: analyses of cellular binding sites. Mol Cell Biol. 1985; 5:964–971. PMID: 4039788.
Article
10. Meisterernst M, Gander I, Rogge L, Winnacker EL. A quantitative analysis of nuclear factor I/DNA interactions. Nucleic Acids Res. 1988; 16:4419–4435. PMID: 3380685.
Article
11. Leegwater PA, van der Vliet PC, Rupp RA, Nowock J, Sippel AE. Functional homology between the sequence-specific DNA-binding proteins nuclear factor I from HeLa cells and the TGGCA protein from chicken liver. EMBO J. 1986; 5:381–386. PMID: 3709517.
Article
12. Jones KA, Kadonaga JT, Rosenfeld PJ, Kelly TJ, Tjian R. A cellular DNA-binding protein that activates eukaryotic transcription and DNA replication. Cell. 1987; 48:79–89. PMID: 3024847.
Article
13. Chaudhry AZ, Lyons GE, Gronostajski RM. Expression patterns of the four nuclear factor I genes during mouse embryogenesis indicate a potential role in development. Dev Dyn. 1997; 208:313–325. PMID: 9056636.
Article
14. Campbell CE, Piper M, Plachez C, Yeh YT, Baizer JS, Osinski JM, et al. The transcription factor Nfix is essential for normal brain development. BMC Dev Biol. 2008; 8:52. PMID: 18477394.
Article
15. Steele-Perkins G, Plachez C, Butz KG, Yang G, Bachurski CJ, Kinsman SL, et al. The transcription factor gene Nfib is essential for both lung maturation and brain development. Mol Cell Biol. 2005; 25:685–698. PMID: 15632069.
16. Shu T, Butz KG, Plachez C, Gronostajski RM, Richards LJ. Abnormal development of forebrain midline glia and commissural projections in Nfia knock-out mice. J Neurosci. 2003; 23:203–212. PMID: 12514217.
17. Gründer A, Ebel TT, Mallo M, Schwarzkopf G, Shimizu T, Sippel AE, et al. Nuclear factor I-B (Nfib) deficient mice have severe lung hypoplasia. Mech Dev. 2002; 112:69–77. PMID: 11850179.
Article
18. Driller K, Pagenstecher A, Uhl M, Omran H, Berlis A, Gründer A, et al. Nuclear factor I X deficiency causes brain malformation and severe skeletal defects. Mol Cell Biol. 2007; 27:3855–3867. PMID: 17353270.
Article
19. Arana-Chavez VE, Massa LF. Odontoblasts: the cells forming and maintaining dentine. Int J Biochem Cell Biol. 2004; 36:1367–1373. PMID: 15147714.
Article
20. Kollar EJ, Baird GR. Tissue interactions in embryonic mouse tooth germs. II. The inductive role of the dental papilla. J Embryol Exp Morphol. 1970; 24:173–186. PMID: 5487155.
21. Thomas HF, Kollar EJ. Differentiation of odontoblasts in grafted recombinants of murine epithelial root sheath and dental mesenchyme. Arch Oral Biol. 1989; 34:27–35. PMID: 2783039.
Article
22. Lee TY, Lee DS, Kim HM, Ko JS, Gronostajski RM, Cho MI, et al. Disruption of Nfic causes dissociation of odontoblasts by interfering with the formation of intercellular junctions and aberrant odontoblast differentiation. J Histochem Cytochem. 2009; 57:469–476. PMID: 19153194.
Article
23. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007; 35:495–516. PMID: 17562483.
Article
24. Itoh M, Nagafuchi A, Moroi S, Tsukita S. Involvement of ZO-1 in cadherin-based cell adhesion through its direct binding to alpha catenin and actin filaments. J Cell Biol. 1997; 138:181–192. PMID: 9214391.
25. Stevenson BR, Siliciano JD, Mooseker MS, Goodenough DA. Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol. 1986; 103:755–766. PMID: 3528172.
Article
26. Kjenseth A, Fykerud TA, Sirnes S, Bruun J, Yohannes Z, Kolberg M, et al. The gap junction channel protein connexin 43 is covalently modified and regulated by SUMOylation. J Biol Chem. 2012; 287:15851–15861. PMID: 22411987.
Article
27. Eckardt D, Theis M, Degen J, Ott T, van Rijen HV, Kirchhoff S, et al. Functional role of connexin43 gap junction channels in adult mouse heart assessed by inducible gene deletion. J Mol Cell Cardiol. 2004; 36:101–110. PMID: 14734052.
Article
28. Martin TA, Mansel RE, Jiang WG. Loss of occludin leads to the progression of human breast cancer. Int J Mol Med. 2010; 26:723–734. PMID: 20878095.
Article
29. Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, et al. Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol. 1993; 123:1777–1788. PMID: 8276896.
Article
30. João SM, Arana-Chavez VE. Tight junctions in differentiating ameloblasts and odontoblasts differentially express ZO-1, occludin, and claudin-1 in early odontogenesis of rat molars. Anat Rec A Discov Mol Cell Evol Biol. 2004; 277:338–343. PMID: 15052661.
Article
31. Smith AJ, Tobias RS, Plant CG, Browne RM, Lesot H, Ruch JV. In vivo morphogenetic activity of dentine matrix proteins. J Biol Buccale. 1990; 18:123–129. PMID: 2211578.
32. Herpin A, Lelong C, Favrel P. Transforming growth factor-beta-related proteins: an ancestral and widespread superfamily of cytokines in metazoans. Dev Comp Immunol. 2004; 28:461–485. PMID: 15062644.
33. Burt DW. Evolutionary grouping of the transforming growth factor-beta superfamily. Biochem Biophys Res Commun. 1992; 184:590–595. PMID: 1575734.
34. Horbelt D, Denkis A, Knaus P. A portrait of transforming growth factor β superfamily signalling: background matters. Int J Biochem Cell Biol. 2012; 44:469–474. PMID: 22226817.
Article
35. Liu F. Smad3 phosphorylation by cyclin-dependent kinases. Cytokine Growth Factor Rev. 2006; 17:9–17. PMID: 16289004.
Article
36. Siegenthaler JA, Miller MW. Transforming growth factor beta 1 promotes cell cycle exit through the cyclin-dependent kinase inhibitor p21 in the developing cerebral cortex. J Neurosci. 2005; 25:8627–8636. PMID: 16177030.
37. Ouellet S, Vigneault F, Lessard M, Leclerc S, Drouin R, Guérin SL. Transcriptional regulation of the cyclin-dependent kinase inhibitor 1A (p21) gene by NFI in proliferating human cells. Nucleic Acids Res. 2006; 34:6472–6487. PMID: 17130157.
Article
38. Itoh S, ten Dijke P. Negative regulation of TGF-beta receptor/Smad signal transduction. Curr Opin Cell Biol. 2007; 19:176–184. PMID: 17317136.
39. Zhang Y, Wang HR, Wrana JL. Smurf1: a link between cell polarity and ubiquitination. Cell Cycle. 2004; 3:391–392. PMID: 14752271.
Article
40. Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T, et al. Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem. 2001; 276:12477–12480. PMID: 11278251.
41. Lee DS, Park JT, Kim HM, Ko JS, Son HH, Gronostajski RM, et al. Nuclear factor I-C is essential for odontogenic cell proliferation and odontoblast differentiation during tooth root development. J Biol Chem. 2009; 284:17293–17303. PMID: 19386589.
Article
42. Lee DS, Yoon WJ, Cho ES, Kim HJ, Gronostajski RM, Cho MI, et al. Crosstalk between nuclear factor I-C and transforming growth factor-β1 signaling regulates odontoblast differentiation and homeostasis. PLoS One. 2011; 6:e29160. PMID: 22195013.
Article
43. Weston CR, Davis RJ. The JNK signal transduction pathway. Curr Opin Cell Biol. 2007; 19:142–149. PMID: 17303404.
Article
44. Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 2001; 81:807–869. PMID: 11274345.
45. Nebreda AR, Porras A. p38 MAP kinases: beyond the stress response. Trends Biochem Sci. 2000; 25:257–260. PMID: 10838561.
Article
46. Fukada T, Civic N, Furuichi T, Shimoda S, Mishima K, Higashiyama H, et al. The zinc transporter SLC39A13/ZIP13 is required for connective tissue development; its involvement in BMP/TGF-beta signaling pathways. PLoS One. 2008; 3:e3642. PMID: 18985159.
Article
47. Prasad AS. Zinc: an overview. Nutrition. 1995; 11(1 Suppl):93–99. PMID: 7749260.
48. Lobner D, Canzoniero LM, Manzerra P, Gottron F, Ying H, Knudson M, et al. Zinc-induced neuronal death in cortical neurons. Cell Mol Biol (Noisy-le-grand). 2000; 46:797–806. PMID: 10875441.
49. Chai F, Truong-Tran AQ, Ho LH, Zalewski PD. Regulation of caspase activation and apoptosis by cellular zinc fluxes and zinc deprivation: a review. Immunol Cell Biol. 1999; 77:272–278. PMID: 10361260.
Article
50. Saydam N, Adams TK, Steiner F, Schaffner W, Freedman JH. Regulation of metallothionein transcription by the metal-responsive transcription factor MTF-1: identification of signal transduction cascades that control metal-inducible transcription. J Biol Chem. 2002; 277:20438–20445. PMID: 11923282.
51. Vallee BL, Auld DS. Zinc metallochemistry in biochemistry. EXS. 1995; 73:259–277. PMID: 7579976.
Article
52. Westin G, Schaffner W. A zinc-responsive factor interacts with a metal-regulated enhancer element (MRE) of the mouse metallothionein-I gene. EMBO J. 1988; 7:3763–3770. PMID: 3208749.
Article
53. LaRochelle O, Labbé S, Harrisson JF, Simard C, Tremblay V, St-Gelais G, et al. Nuclear factor-1 and metal transcription factor-1 synergistically activate the mouse metallothionein-1 gene in response to metal ions. J Biol Chem. 2008; 283:8190–8201. PMID: 18230604.
Article
54. Oh HJ, Lee HK, Park SJ, Cho YS, Bae HS, Cho MI, et al. Zinc balance is critical for NFI-C mediated regulation of odontoblast differentiation. J Cell Biochem. 2012; 113:877–887. PMID: 22228435.
Article
55. Black AR, Black JD, Azizkhan-Clifford J. Sp1 and krüppel-like factor family of transcription factors in cell growth regulation and cancer. J Cell Physiol. 2001; 188:143–160. PMID: 11424081.
Article
56. Shields JM, Christy RJ, Yang VW. Identification and characterization of a gene encoding a gut-enriched Krüppel-like factor expressed during growth arrest. J Biol Chem. 1996; 271:20009–20017. PMID: 8702718.
Article
57. Evans PM, Liu C. Roles of Krüpel-like factor 4 in normal homeostasis, cancer and stem cells. Acta Biochim Biophys Sin (Shanghai). 2008; 40:554–564. PMID: 18604447.
58. Gumireddy K, Li A, Gimotty PA, Klein-Szanto AJ, Showe LC, Katsaros D, et al. KLF17 is a negative regulator of epithelial-mesenchymal transition and metastasis in breast cancer. Nat Cell Biol. 2009; 11:1297–1304. PMID: 19801974.
Article
59. Lin H, Liu H, Sun Q, Yuan G, Zhang L, Chen Z. KLF4 promoted odontoblastic differentiation of mouse dental papilla cells via regulation of DMP1. J Cell Physiol. 2013; 228:2076–2085. PMID: 23558921.
Article
60. Lin H, Xu L, Liu H, Sun Q, Chen Z, Yuan G, et al. KLF4 promotes the odontoblastic differentiation of human dental pulp cells. J Endod. 2011; 37:948–954. PMID: 21689550.
Article
61. Narayanan K, Gajjeraman S, Ramachandran A, Hao J, George A. Dentin matrix protein 1 regulates dentin sialophosphoprotein gene transcription during early odontoblast differentiation. J Biol Chem. 2006; 281:19064–19071. PMID: 16679514.
Article
62. Lee HK, Lee DS, Park SJ, Cho KH, Bae HS, Park JC. Nuclear factor I-C (NFIC) regulates dentin sialophosphoprotein (DSPP) and E-cadherin via control of Krüppel-like factor 4 (KLF4) during dentinogenesis. J Biol Chem. 2014; 289:28225–28236. PMID: 25138274.
Article
63. Nishimura R, Hata K, Matsubara T, Wakabayashi M, Yoneda T. Regulation of bone and cartilage development by network between BMP signalling and transcription factors. J Biochem. 2012; 151:247–254. PMID: 22253449.
Article
64. Matsubara T, Kida K, Yamaguchi A, Hata K, Ichida F, Meguro H, et al. BMP2 regulates Osterix through Msx2 and Runx2 during osteoblast differentiation. J Biol Chem. 2008; 283:29119–29125. PMID: 18703512.
Article
65. Lee MH, Kwon TG, Park HS, Wozney JM, Ryoo HM. BMP-2-induced Osterix expression is mediated by Dlx5 but is independent of Runx2. Biochem Biophys Res Commun. 2003; 309:689–694. PMID: 12963046.
Article
66. Lee DS, Choung HW, Kim HJ, Gronostajski RM, Yang YI, Ryoo HM, et al. NFI-C regulates osteoblast differentiation via control of osterix expression. Stem Cells. 2014; 32:2467–2479. PMID: 24801901.
Article
67. Song L, Liu M, Ono N, Bringhurst FR, Kronenberg HM, Guo J. Loss of wnt/β-catenin signaling causes cell fate shift of preosteoblasts from osteoblasts to adipocytes. J Bone Miner Res. 2012; 27:2344–2358. PMID: 22729939.
Article
68. Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM. Transcriptional regulation of adipogenesis. Genes Dev. 2000; 14:1293–1307. PMID: 10837022.
Article
69. Chung SS, Lee JS, Kim M, Ahn BY, Jung HS, Lee HM, et al. Regulation of Wnt/β-catenin signaling by CCAAT/enhancer binding protein β during adipogenesis. Obesity (Silver Spring). 2012; 20:482–487. PMID: 21760632.
Article
70. Kang S, Bennett CN, Gerin I, Rapp LA, Hankenson KD, Macdougald OA. Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma. J Biol Chem. 2007; 282:14515–14524. PMID: 17351296.
71. Christodoulides C, Lagathu C, Sethi JK, Vidal-Puig A. Adipogenesis and WNT signalling. Trends Endocrinol Metab. 2009; 20:16–24. PMID: 19008118.
Article
72. Prestwich TC, Macdougald OA. Wnt/beta-catenin signaling in adipogenesis and metabolism. Curr Opin Cell Biol. 2007; 19:612–617. PMID: 17997088.
73. Rimm DL, Koslov ER, Kebriaei P, Cianci CD, Morrow JS. Alpha 1(E)-catenin is an actin-binding and -bundling protein mediating the attachment of F-actin to the membrane adhesion complex. Proc Natl Acad Sci U S A. 1995; 92:8813–8817. PMID: 7568023.
Article
74. Huber O, Korn R, McLaughlin J, Ohsugi M, Herrmann BG, Kemler R. Nuclear localization of beta-catenin by interaction with transcription factor LEF-1. Mech Dev. 1996; 59:3–10. PMID: 8892228.
75. Behrens J, von Kries JP, Kühl M, Bruhn L, Wedlich D, Grosschedl R, et al. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature. 1996; 382:638–642. PMID: 8757136.
76. Kim TH, Bae CH, Lee JC, Ko SO, Yang X, Jiang R, et al. β-catenin is required in odontoblasts for tooth root formation. J Dent Res. 2013; 92:215–221. PMID: 23345535.
Article
77. Zhou J, Wang S, Qi Q, Yang X, Zhu E, Yuan H, et al. Nuclear factor I-C reciprocally regulates adipocyte and osteoblast differentiation via control of canonical Wnt signaling. FASEB J. 2017; DOI: 10.1096/fj.201600975RR. [Epub ahead of print].
78. Santoro C, Mermod N, Andrews PC, Tjian R. A family of human CCAAT-box-binding proteins active in transcription and DNA replication: cloning and expression of multiple cDNAs. Nature. 1988; 334:218–224. PMID: 3398920.
Article
Full Text Links
  • JKAOMS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr