1. Salowe R, Salinas J, Farbman NH, et al. Primary open-angle glaucoma in individuals of African descent: a review of risk factors. J Clin Exp Ophthalmol. 2015; 6.
2. Shields MB. Normal-tension glaucoma: is it different from primary open-angle glaucoma? Curr Opin Ophthalmol. 2008; 19:85–88.
3. Suzuki Y, Iwase A, Araie M, et al. Risk factors for open-angle glaucoma in a Japanese population: the Tajimi Study. Ophthalmology. 2006; 113:1613–1617.
4. Kuzin AA, Varma R, Reddy HS, et al. Ocular biometry and open-angle glaucoma: the Los Angeles Latino Eye Study. Ophthalmology. 2010; 117:1713–1719.
5. Buus DR, Anderson DR. Peripapillary crescents and halos in normal-tension glaucoma and ocular hypertension. Ophthalmology. 1989; 96:16–19.
6. Jonas JB, Xu L. Parapapillary chorioretinal atrophy in normal-pressure glaucoma. Am J Ophthalmol. 1993; 115:501–505.
7. Park KH, Tomita G, Liou SY, Kitazawa Y. Correlation between peripapillary atrophy and optic nerve damage in normal-tension glaucoma. Ophthalmology. 1996; 103:1899–1906.
8. Drance S, Anderson DR, Schulzer M. Collaborative Normal-Tension Glaucoma Study Group. Risk factors for progression of visual field abnormalities in normal-tension glaucoma. Am J Ophthalmol. 2001; 131:699–708.
9. Lin PW, Friedman M, Lin HC, et al. Normal tension glaucoma in patients with obstructive sleep apnea/hypopnea syndrome. J Glaucoma. 2011; 20:553–558.
10. Kim M, Kim TW, Park KH, Kim JM. Risk factors for primary open-angle glaucoma in South Korea: the Namil study. Jpn J Ophthalmol. 2012; 56:324–329.
11. Leung DY, Tham CC, Li FC, et al. Silent cerebral infarct and visual field progression in newly diagnosed normal-tension glaucoma: a cohort study. Ophthalmology. 2009; 116:1250–1256.
12. Chon B, Qiu M, Lin SC. Myopia and glaucoma in the South Korean population. Invest Ophthalmol Vis Sci. 2013; 54:6570–6577.
13. Kim MJ, Kim MJ, Kim HS, et al. Risk factors for open-angle glaucoma with normal baseline intraocular pressure in a young population: the Korea National Health and Nutrition Examination Survey. Clin Exp Ophthalmol. 2014; 42:825–832.
14. Hossein-nezhad A, Holick MF. Vitamin D for health: a global perspective. Mayo Clin Proc. 2013; 88:720–755.
15. Tarcin O, Yavuz DG, Ozben B, et al. Effect of vitamin D deficiency and replacement on endothelial function in asymptomatic subjects. J Clin Endocrinol Metab. 2009; 94:4023–4030.
16. Balion C, Griffith LE, Strifler L, et al. Vitamin D, cognition, and dementia: a systematic review and meta-analysis. Neurology. 2012; 79:1397–1405.
17. van der Schaft J, Koek HL, Dijkstra E, et al. The association between vitamin D and cognition: a systematic review. Ageing Res Rev. 2013; 12:1013–1023.
18. Schreiner DS, Jande SS, Lawson DE. Target cells of vitamin D in the vertebrate retina. Acta Anat (Basel). 1985; 121:153–162.
19. Lucas RM, Ponsonby AL, Dear K, et al. Sun exposure and vitamin D are independent risk factors for CNS demyelination. Neurology. 2011; 76:540–548.
20. Yanagi M, Kawasaki R, Wang JJ, et al. Vascular risk factors in glaucoma: a review. Clin Exp Ophthalmol. 2011; 39:252–258.
21. Oh SW, Lee S, Park C, Kim DJ. Elevated intraocular pressure is associated with insulin resistance and metabolic syndrome. Diabetes Metab Res Rev. 2005; 21:434–440.
22. Krefting EA, Jorde R, Christoffersen T, Grimnes G. Vitamin D and intraocular pressure: results from a case-control and an intervention study. Acta Ophthalmol. 2014; 92:345–349.
23. Yoo TK, Oh E, Hong S. Is vitamin D status associated with open-angle glaucoma? A cross-sectional study from South Korea. Public Health Nutr. 2014; 17:833–843.
24. Wiggs JL. The cell and molecular biology of complex forms of glaucoma: updates on genetic, environmental, and epigenetic risk factors. Invest Ophthalmol Vis Sci. 2012; 53:2467–2469.
25. Yang L, Ma J, Zhang X, et al. Protective role of the vitamin D receptor. Cell Immunol. 2012; 279:160–166.
26. DeLuca GC, Kimball SM, Kolasinski J, et al. Review: the role of vitamin D in nervous system health and disease. Neuropathol Appl Neurobiol. 2013; 39:458–484.
27. McKinnon SJ. The cell and molecular biology of glaucoma: common neurodegenerative pathways and relevance to glaucoma. Invest Ophthalmol Vis Sci. 2012; 53:2485–2487.
28. Kim JM, Kim YJ, Kim DM. Increased expression of oxyproteins in the optic nerve head of an in vivo model of optic nerve ischemia. BMC Ophthalmol. 2012; 12:63.
29. Shah GB, Sharma S, Mehta AA, Goyal RK. Oculohypotensive effect of angiotensin-converting enzyme inhibitors in acute and chronic models of glaucoma. J Cardiovasc Pharmacol. 2000; 36:169–175.
30. Pittas AG, Chung M, Trikalinos T, et al. Systematic review: vitamin D and cardiometabolic outcomes. Ann Intern Med. 2010; 152:307–314.
31. Flammer J, Orgul S. Optic nerve blood-flow abnormalities in glaucoma. Prog Retin Eye Res. 1998; 17:267–289.
32. Pasquale LR, Loomis SJ, Weinreb RN, et al. Estrogen pathway polymorphisms in relation to primary open angle glaucoma: an analysis accounting for gender from the United States. Mol Vis. 2013; 19:1471–1481.
33. Lim SK, Kung AW, Sompongse S, et al. Vitamin D inadequacy in postmenopausal women in Eastern Asia. Curr Med Res Opin. 2008; 24:99–106.
34. Battaglia C, Mancini F, Regnani G, et al. Hormone therapy and ophthalmic artery blood flow changes in women with primary open-angle glaucoma. Menopause. 2004; 11:69–77.
35. Grundmann M, von Versen-Hoynck F. Vitamin D: roles in women's reproductive health? Reprod Biol Endocrinol. 2011; 9:146.
36. Wulaningsih W, Van Hemelrijck M, Michaelsson K, et al. Association of serum inorganic phosphate with sex steroid hormones and vitamin D in a nationally representative sample of men. Andrology. 2014; 2:967–976.