Ann Lab Med.  2017 Jan;37(1):92-94. 10.3343/alm.2017.37.1.92.

Acromicric Dysplasia Caused by a Novel Heterozygous Mutation of FBN1 and Effects of Growth Hormone Treatment

Affiliations
  • 1Green Cross Laboratories, Yongin, Korea.
  • 2Department of Pediatrics, Myongji Hospital, Seonam University College of Medicine, Goyang, Korea. sjkim0128@mjh.or.kr
  • 3Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
  • 4Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
  • 5Department of Radiology, Woorisoa Children's Hospital, Seoul, Korea.

Abstract

No abstract available.


MeSH Terms

Bone Diseases, Developmental/diagnosis/drug therapy/*genetics
Child
Fibrillin-1/*genetics
Hand/diagnostic imaging
Heterozygote
Human Growth Hormone/therapeutic use
Humans
Limb Deformities, Congenital/diagnosis/drug therapy/*genetics
Male
Pelvis/diagnostic imaging
Fibrillin-1
Human Growth Hormone

Figure

  • Fig. 1 Radiographs of the patient with acromicric dysplasia. (A) Both hands at 11 yr of age show delayed carpal bone age, estimated to around 8 yr of age. (B) Pelvis shows small iliac bone with flat and shallow acetabuli and coxa valga of the femora.

  • Fig. 2 Growth chart of the patient. Growth retardation was remarkable, and after growth hormone (GH) treatment, growth velocity increased to 5.4 cm/year.


Reference

1. Faivre L, Le Merrer M, Baumann C, Polak M, Chatelain P, Sulmont V, et al. Acromicric dysplasia: long term outcome and evidence of autosomal dominant inheritance. J Med Genet. 2001; 38:745–749. PMID: 11694546.
2. Le Goff C, Mahaut C, Wang LW, Allali S, Abhyankar A, Jensen S, et al. Mutations in the TGFβ binding-protein-like domain 5 of FBN1 are responsible for acromicric and geleophysic dysplasias. Am J Hum Genet. 2011; 89:7–14. PMID: 21683322.
3. Cain SA, McGovern A, Baldwin AK, Baldock C, Kielty CM. Fibrillin-1 mutations causing Weill-Marchesani syndrome and acromicric and geleophysic dysplasias disrupt heparan sulfate interactions. PLoS One. 2012; 7:e48634. PMID: 23133647.
4. Wang Y, Zhang H, Ye J, Han L, Gu X. Three novel mutations of the FBN1 gene in Chinese children with acromelic dysplasia. J Hum Genet. 2014; 59:563–567. PMID: 25142510.
5. Superti-Furga A, Unger S. Nosology and classification of genetic skeletal disorders: 2006 revision. Am J Med Genet A. 2007; 143A:1–18. PMID: 17120245.
6. Le Goff C, Morice-Picard F, Dagoneau N, Wang LW, Perrot C, Crow YJ, et al. ADAMTSL2 mutations in geleophysic dysplasia demonstrate a role for ADAMTS-like proteins in TGF-beta bioavailability regulation. Nat Genet. 2008; 40:1119–1123. PMID: 18677313.
7. Faivre L, Gorlin RJ, Wirtz MK, Godfrey M, Dagoneau N, Samples JR, et al. In frame fibrillin-1 gene deletion in autosomal dominant Weill-Marchesani syndrome. J Med Genet. 2003; 40:34–36. PMID: 12525539.
8. Le Goff C, Cormier-Daire V. Genetic and molecular aspects of acromelic dysplasia. Pediatr Endocrinol Rev. 2009; 6:418–423. PMID: 19396027.
9. Faivre L, Dollfus H, Lyonnet S, Alembik Y, Mégarbané A, Samples J, et al. Clinical homogeneity and genetic heterogeneity in Weill-Marchesani syndrome. Am J Med Genet A. 2003; 123A:204–207. PMID: 14598350.
10. Hagenäs L, Hertel T. Skeletal dysplasia, growth hormone treatment and body proportion: comparison with other syndromic and non-syndromic short children. Horm Res. 2003; 60(S3):65–70. PMID: 14671400.
Full Text Links
  • ALM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr