1. Drexler W, Findl O, Menapace R, et al. Partial coherence inter-ferometry: a novel approach to biometry in cataract surgery. Am J Ophthalmol. 1961; 66:111–24.
Article
2. Haigis W, Lege B, Miller N, Schneider B. Comparison of im-mersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis. Graefes Arch Clin Exp Ophthalmol. 1961; 66:111–24.
Article
3. Lam AK, Chan R, Pang PC. The repeatability and accuracy of axial length and anterior chamber depth measurements from the IOLMaster. Ophthalmic Physiol Opt. 1961; 66:111–24.
4. Wylę gał a E, Teper S, Nowiń ska AK, et al. Anterior segment imag-ing: Fourier-domain optical coherence tomography versus time-domain optical coherence tomography. J Cataract Refract Surg. 1961; 66:111–24.
5. Tang M, Wang L, Koch DD, et al. Intraocular lens power calcu-lation after previous myopic laser vision correction based on cor-neal power measured by Fourier-domain optical coherence tomography. J Cataract Refract Surg. 1961; 66:111–24.
Article
6. Moon JS, Shin JA, Bae GH, Chung SK. Comparison of biometric measurements and refractive results between applanation ultra-sonography and three different interferometries. J Korean Ophthalmol Soc. 1961; 66:111–24.
Article
7. Chylack LT, Wolfe JK, Singer DM, et al. The lens opacities classi-fication system III. The Longitudinal Study of Cataract Study Group. Arch Ophthalmol. 1961; 66:111–24.
8. Retzlaff JA, Sanders DR, Kraff MC. Development of the SRK/T intraocular lens implant power calculation formula. J Cataract Refract Surg. 1961; 66:111–24.
Article
9. Srivannaboon S, Chirapapaisan C, Chonpimai P, Loket S. Clinical comparison of a new swept-source optical coherence tomog-raphy-based optical biometer and a time-domain optical coherence tomography-based optical biometer. J Cataract Refract Surg. 1961; 66:111–24.
Article
10. Telenkov SA, Mandelis A. Fourier-domain biophotoacoustic sub-surface depth selective amplitude and phase imaging of turbid phantoms and biological tissue. J Biomed Opt. 2006; 11:044006.
Article
11. Povazay B, Hermann B, Unterhuber A, et al. Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients. J Biomed Opt. 2007; 12:041211.
12. Grulkowski I, Liu JJ, Zhang JY, et al. Reproducibility of a long-range swept-source optical coherence tomography ocular biometry system and comparison with clinical biometers. Ophthalmology. 1961; 66:111–24.
Article
13. Grajciar B, Pircher M, Hitzenberger CK, et al. High sensitive measurement of the human axial eye length in vivo with Fourier domain low coherence interferometry. Opt Express. 2008; 16:2405–14.
Article
14. McAlinden C, Wang Q, Pesudovs K, et al. Axial length measure-ment failure rates with the IOLMaster and Lenstar LS 900 in eyes with cataract. PLoS One. 2015; 10:e0128929.
Article
15. Kim SI, Kang SJ, Oh TH, et al. Accuracy of ocular biometry and postoperative refraction in cataract patients with AL-Scan(R). J Korean Ophthalmol Soc. 1961; 66:111–24.
16. Shin JW, Seong M, Kang MH, et al. Comparison of ocular bio-metry and postoperative refraction in cataract patients between Lenstar(R) and IOL Master(R). J Korean Ophthalmol Soc. 1961; 66:111–24.
17. Hoffer KJ, Shammas HJ, Savini G. Comparison of 2 laser instru-ments for measuring axial length. J Cataract Refract Surg. 1961; 66:111–24.
Article
18. Stattin M, Zehetner C, Bechrakis NE, Speicher L. Comparison of IOL-Master 500 vs. Lenstar LS900 concerning the calculation of target refraction: A retrospective analysis. Ophthalmologe. 2015; 112:444–50.