1. Davies B. A review of robotics in surgery. Proc Inst Mech Eng H. 2000; 214:129–140.
Article
2. Zanorano L, Li Q, Jain S, Kaur G. Robotics in neurosurgery: state of the art and future technological challenges. Int J Med Robot. 2004; 1:7–22.
Article
3. Camarillo DB, Krummel TM, Salisbury JK. Robotic technology in surgery: past, present, and future. Am J Surg. 2004; 188:Suppl 1. S2–S15.
Article
4. Nathoo N, Cavusoglu MC, Vogelbaum MA, Barnett GH. In touch with robotics: neurosurgery for the future. Neurosurgery. 2005; 56:421–433.
Article
5. Zemiti N, Morel G, Ortmaier T, Bonnet N. Mechatronic design of a new robot for force control in minimally invasive surgery. IEEE ASME Trans Mechatron. 2007; 12:143–153.
Article
6. Karas CS, Chiocca EA. Neurosurgical robotics: a review of brain and spine applications. J Robot Surg. 2007; 1:39–43.
Article
7. Haidegger T, Kovacs L, Fordos G, Benyo Z, Kazanzides P. Future trends in robotics neurosurgery. IFMBE Proc. 2008; 20:229–233.
8. Kazanzides P, Fichtinger G, Hager GD, Okamura AM, Whitcomb LL, Taylor RH. Surgical and interventional robotics: core concepts, technology, and design. IEEE Robot Autom Mag. 2008; 15:122–130.
Article
9. Beasley RA. Medical robots: current systems and research directions. 2012; article ID 401613:14 pages.
Article
10. Bertelsen A, Melo J, Sánchez E, Borro D. A review of surgical robots for spinal interventions. Int J Med Robot. 2013; 9:407–422.
Article
11. Mattei TA, Rodriguez AH, Sambhara D, Mendel E. Current state-of-art and future perspectives of robotc technology in neurosurgery. Neurosurg Rev. 2014; 37:357–366.
Article
12. Li G, Su H, Cole GA, Shang W, Harrington K, Camilo A, Pilitsis JG. Robotic system for MRI-guided stereotactic neurosurgery. IEEE Trans Biomed Eng. 2015; 62:1077–1088.
Article
16. Horner NB, Potts DG. A comparison of CT-stereotaxic brain biopsy techniques. Invest Radiol. 1984; 19:367–373.
Article
17. Apuzzo ML, Chandrasoma PT, Cohen D, Zee CS, Zelman V. Computed imaging stereotaxy: experience and perspective related to 500 procedures applied to brain masses. Neurosurgery. 1987; 20:930–937.
Article
18. Maciunas RJ, Galloway RLJ, Latimer JW. The application accuracy of stereotactic frames. Neurosurgery. 1994; 35:682–695.
Article
19. Lunsford LD, Kondziolka D, Leksell D. Leksell stereotactic apparatus. In : Lozano AM, Gildenberg PL, Tasker RR, editors. Streotactic and functional neurosurgery. Berlin: Springer;2009. p. 469–485.
20. Li QH, Zamorano L, Pandya A, Perez R, Gong J, Diaz F. The application accuracy of the neuromate robot quantitative comparison with frameless and frame-based surgical localization systems. Comput Aided Surg. 2002; 7:90–98.
Article
21. Holl EM, Petersen EA, Oltynle T, Martinez-Torres I, Limousin P, Hariz MI, Zrinzo L. Improving targeting in image-guided frame-based deep brain stimulation. Neurosurgery. 2010; 67:437–447.
Article
22. EIjamel MS. Validation of the PathFinder neurosurgical robot using a phantom. Int J Med Robot. 2007; 3:372–377.
Article
23. Varma TR, Eldridge P. Use of the NeuroMate stereotactic robot in a frameless mode for functional neurosurgery. Int J Med Robot. 2006; 2:107–113.
Article
24. Lefranc M, Capel C, Pruvot AS, Fichten A, Desenclos C, Toussaint P, et al. The impact of the reference imaging modality registration method and intraoperative flat-panel computed tomography on the accuracy of ROSA stereotactic robot. Stereotact Funct Neurosurg. 2014; 92:242–250.
Article
25. Chan F, Kassim I, Lo C, Ho CL, David Low, Ang BT, Ng I. Image-guided robotic neurosurgery-an in vitro and in vivo point accuracy evaluation experimental study. Surg Neurol. 2009; 71:640–648.
Article
26. Joskowicz L, Shamir R, Freiman M, Shoham M, Zehavi E, Umansky F, Shoshan Y. Image-guided system with miniature robot for precise positioning and targeting in keyhole neurosurgery. Comput Aided Surg. 2006; 11:181–193.
Article
27. De Momi E, Ferrigno G. Robotic and artificial intelligence for keyhole neurosurgery: the ROBOCAST project, a multi-modal autonomous path planner. Proc Inst Mech Eng H. 2009; 224:715–727.
Article
28. Comparetti MD, Vaccarella A, Lorenzo DD, Ferrigno G, Momi ED. Multi-robotic approach for keyhole neurosurgery: the ROBOCAST project. In : Proc. of the 2011 SCATh joint workshop on new technologies for computer/robot assisted surgery; Graz Austria. 2011.
29. Heinig M, Govela MF, Gasca F, Dold C, Hofmann UG, Tronnier V, et al. MARS-Motor Assisted Robotic Steoreotaxy System. In : Proc. 5th Inte IEEE EMBS Conf on Neural Engineering Cancun; 2011. p. 334–337.
30. Heinig M, Hofmann UG, Schlaefer A. Calibration of the motor-assisted robotic stereotaxy system: MARS. Int J Comput Assist Radiol Surg. 2012; 7:911–920.
Article
32. Shoham M, Burman M, Zehavi E, Joskowicz L, Batkilin E, Kunicher Y. Bone-mounted miniature robot for surgical procedures: concept and clinical applications. IEEE Trans Rob Autom. 2003; 19(5):893–901.
Article
33. Comparetti MD, Momi ED, Riechmann M, Vaccarella A, Ferrigno G. Optically tracked multi-robot system for keyhole neurosurgery. In : Proc. Inte Conf on Robo Autom; 2011. p. 661–666.
34. Kwoh YS, Jou J, Jonckheere EA, Hayait S. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng. 1988; 35:153–160.
Article
35. Benabid AL, Cinquin P, Lavalle S, Le Bas JF, Demongest J, de Rougemont J. Computer-driven robot for stereotactic surgery connected to CT scan and magnetic resonance imaging; technological design and preliminary results. Appl Neurophysiol. 1987; 50:153–154.
Article
36. Glauser D, Fankhauser H, Epitaux M, Hefti JL, Jaccottet A. Neurosurgical robot Minerva: first results and current developments. J Image Guid Surg. 1995; 1:266–272.
Article
37. Sutherland GR, Latour I, Greer AD, Fielding T, Feil G, Newhook P. An image-guided magnetic resonance-compatible surgical robot. Neurosurgery. 2008; 62:286–293.
Article
38. Seo JT, Woo JH, Lim H, Yi B-J. Design of a new counter-balancing stackable mechanism. In : Proc. IEEE Int. Conf. on Robotics and Autom; 2014. p. 2372–2377.
39. Lim H, Seo JT, Woo JH, Lee SH, Yi B-J. Development of passive robot system with warning system for otologic surgery. In : Korean Robotics Conference; 2015. p. 459–460.
40. Kim SM, Cheong J, Kim WK, Yi B-J. Development of a selectively passive macro-micro type neurosurgical robot. In : 12th Asian Conf Comput Aided Surg; 2016. p. 151–152.