2. Yoon SJ, Lee H, Shin Y, Kim YI, Kim CY, Chang H. Estimation of the burden of major cancers in Korea. J Korean Med Sci. 2002. 10. 17(5):604–610.
Article
3. Hirano S, Tsumoto S. Multiscale analysis of long time-seriesmedical databases. AMIA Annu Symp Proc. 2003. 289–293.
4. Ismael MB, Eisenstein EL, Hammond WE. Acomparison of neural network models for the prediction of the cost of care for acute coronary syndrome patients. Proc AMIA Symp. 1998. 533–537.
5. Demsar J, Zupan B, Aoki N, Wall MJ, Granchi TH, Robert Beck J. Feature mining and predictive model construction from severe trauma patient's data. Int J Med Inform. 2001. 09. 63(1-2):41–50.
Article
6. Brooks SE, Ahn J, Mullins CD, Baquet CR, D'Andrea A. Health care cost and utilization project analysis of comorbid illness and complications for patients undergoing hysterectomy for endometrial carcinoma. Cancer. 2001. 08. 15. 92(4):950–958.
Article
7. Penberthy L, Retchin SM, McDonald MK, McClish DK, Desch CE, Riley GF, et al. Predictors ofMedicare costs in elderly beneficiaries with breast, colorectal, lung, or prostate cancer. Health Care Manag Sci. 1999. 07. 2(3):149–160.
8. Tollestrup K, Frost FJ, Stidley CA, Bedrick E, McMillan G, Kunde T, et al. The excess costs of breast cancer health care in Hispanic and non-Hispanic female members of a managed care organization. Breast Cancer Res Treat. 2001. 03. 66(1):25–31.
Article
9. Dayhoff JE, DeLeo JM. Artificial neural networks: opening the black box. Cancer. 2001. 04. 91(8):Suppl. 1615–1635.
10. Goss E, Vozikis G. Improving Health Care Organizational Management Through Neural Network Learning. Health Care Manag Sci. 2002. 5(3):221–227.
11. Marshall AH, McClean SI, Millard PH. Addressing bed costs for the elderly: a new methodology for modelling patient outcomes and length of stay. Health Care Manag Sci. 2004. 02. 7(1):27–33.
Article
12. Chae YM, Ho SH, Cho KW, Lee DH, Ji SH. Data mining approach to policy analysis in a health insurance domain. Int JMed Inform. 2001. 07. 62(2-3):103–111.
Article
13. Lee SM, Kang JO, Suh YM. Comparison of hospital charge prediction models for colorectal cancer patients: neural network vs. decision tree models. J Korean Med Sci. 2004. 10. 19(5):677–681.
Article
14. Chien CW, Lee YC, Ma T, Lee TS, Lin YC, Wang W, et al. The application of artificial neural networks and decision treemodel in predicting post-operative complication for gastric cancer patients. Hepatogastroenterology. 2008. May-Jun. 55(84):1140–1145.
15. Goss EP, Vozikis GS. Improving health care organizational management through neural network learning. Health Care Manag Sci. 2002. 08. 5(3):221–227.
16. Fogel DB, Wasson EC 3rd, Boughton EM, Porto VW. Evolving artificial neural networks for screening features from mammograms. Artif Intell Med. 1998. 11. 14(3):317–326.
Article
17. Kononenko I. Machine learning for medical diagnosis: history, state of the art and perspective. Artif Intell Med. 2001. 08. 23(1):89–109.
Article
18. Bojarczuk CC, Lopes HS, Freitas AA, Michalkiewicz EL. A constrained-syntax genetic programming system for discovering classification rules: application to medical data sets. Artif Intell Med. 2004. 01. 30(1):27–48.
Article
19. Breault JL, Goodall CR, Fos PJ. Data mining a diabetic data warehouse. Artif Intell Med. 2002. Sep-Oct. 26(1-2):37–54.
Article