Ann Pediatr Endocrinol Metab.  2015 Dec;20(4):192-197. 10.6065/apem.2015.20.4.192.

Value of serum 1,5-anhydroglucitol measurements in childhood obesity in the continuum of diabetes

Affiliations
  • 1Department of Pediatrics, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea. 20010029@kuh.ac.kr

Abstract

PURPOSE
The prevalence of type 2 diabetes mellitus (T2DM) and obesity are currently increasing. Accordingly, the concept of "preventing diabetes" in high-risk groups has become more important in diabetic care, but the use of glycated hemoglobin (HbA1c) as a measure has limitations in this field. The aim of this study was to investigate the utility of 1,5-anhydroglucitol (1,5-AG) in assessing prediabetes status in obese children.
METHODS
The medical records of 74 subjects aged 6-19 years (of which 27 were overweight/obese and 47 had diabetes) who had 1,5-AG data were reviewed retrospectively. We compared 1,5-AG with HbA1c using the Pearson correlation test to assess the clinical utility of 1,5-AG.
RESULTS
1,5-AG levels were higher (31.1+/-10.1 microg/mL vs. 7.4+/-7.3 microg/mL) and HbA1c levels were lower (5.5%+/-0.3% vs. 8.9%+/-2.7%) in the overweight/obese group than in the diabetics group. The range of 1,5-AG levels in obese children was wide (16.8-59.3 microg/mL), and did not have significance with HbA1c. A negative correlation between 1,5-AG and HbA1c was significant in the entire subject (r=-0.822, P<0.001), and also in the HbA1c range of 5.5% to 8% (r=-0.736, P<0.001).
CONCLUSION
1,5-AG is a valuable index in the HbA1c range of 5.5%-8% and it might be considered an early glycemic control index in insulin-resistant obese children with an HbA1c level above 5.5%. Moreover, the 1,5-AG level assessment should be presented as a supplementary tool for better compliance, as well as being an improvement in diabetes management for the short-term glucose control in relatively well-controlled diabetes patients with an HbA1c level below 8%.

Keyword

1,5-anhydroglucitol; Diabetes mellitus; Obesity; Prediabetic state

MeSH Terms

Child
Compliance
Diabetes Mellitus
Diabetes Mellitus, Type 2
Glucose
Hemoglobin A, Glycosylated
Humans
Medical Records
Obesity
Pediatric Obesity*
Prediabetic State
Prevalence
Retrospective Studies
Glucose

Figure

  • Fig. 1 (A) Relationship between 1,5-anhydroglucitol (1,5-AG) and HbA1c in the overweight/obese (OWOB) and the diabetes (T1DM and T2DM) groups. Reference cutoff values of 1,5-AG were 23.1 and 10 µg/mL and reference cutoff values of HbA1c are 5.5% and 8.0%. (B) The logarithmic transformed 1,5-AG value (ln [1,5-AG]) was inversely correlated with HbA1c, and ln (1,5-AG) and HbA1c also showed a modest linear correlation in subjects with HbA1c≤8%; OWOB group (open circle), diabetes group (T1DM: cross, T2DM: closed triangle). HbA1C, glycosylated hemoglobin; T1DM, type1 diabetes mellitus; T2DM, type2 diabetes mellitus.


Reference

1. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med. 1993; 329:977–986. PMID: 8366922.
2. Goldstein DE, Little RR, Lorenz RA, Malone JI, Nathan D, Peterson CM, et al. Tests of glycemia in diabetes. Diabetes Care. 2004; 27:1761–1773. PMID: 15220264.
Article
3. Avignon A, Radauceanu A, Monnier L. Nonfasting plasma glucose is a better marker of diabetic control than fasting plasma glucose in type 2 diabetes. Diabetes Care. 1997; 20:1822–1826. PMID: 9405900.
Article
4. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998; 352:854–865. PMID: 9742977.
5. Siegelaar SE, Holleman F, Hoekstra JB, DeVries JH. Glucose variability; does it matter? Endocr Rev. 2010; 31:171–182. PMID: 19966012.
Article
6. Colette C, Monnier L. Acute glucose fluctuations and chronic sustained hyperglycemia as risk factors for cardiovascular diseases in patients with type 2 diabetes. Horm Metab Res. 2007; 39:683–686. PMID: 17846977.
Article
7. Freedman BI, Shenoy RN, Planer JA, Clay KD, Shihabi ZK, Burkart JM, et al. Comparison of glycated albumin and hemoglobin A1c concentrations in diabetic subjects on peritoneal and hemodialysis. Perit Dial Int. 2010; 30:72–79. PMID: 20056983.
Article
8. Kim WJ, Park CY. Review of the potential glycemic markers glycated albumin and 1,5-anhydroglucitol. J Korean Diabetes. 2012; 13:1–6.
Article
9. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004; 27:1047–1053. PMID: 15111519.
Article
10. Demmer RT, Zuk AM, Rosenbaum M, Desvarieux M. Prevalence of diagnosed and undiagnosed type 2 diabetes mellitus among US adolescents: results from the continuous NHANES, 1999-2010. Am J Epidemiol. 2013; 178:1106–1113. PMID: 23887044.
Article
11. Sato A. Indicators of glycemic control -- hemoglobin A1c (HbA1c), glycated albumin (GA), and 1,5-anhydroglucitol (1,5-AG). Rinsho Byori. 2014; 62:45–52. PMID: 24724426.
12. DECODE Study Group. the European Diabetes Epidemiology Group. Glucose tolerance and cardiovascular mortality: comparison of fasting and 2-hour diagnostic criteria. Arch Intern Med. 2001; 161:397–405. PMID: 11176766.
13. Quagliaro L, Piconi L, Assaloni R, Martinelli L, Motz E, Ceriello A. Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: the role of protein kinase C and NAD(P) H-oxidase activation. Diabetes. 2003; 52:2795–2804. PMID: 14578299.
Article
14. Sun J, Dou JT, Wang XL, Yang GQ, Lu ZH, Zheng H, et al. Correlation between 1,5-anhydroglucitol and glycemic excursions in type 2 diabetic patients. Chin Med J (Engl). 2011; 124:3641–3645. PMID: 22340217.
15. Marling CR, Shubrook JH, Vernier SJ, Wiley MT, Schwartz FL. Characterizing blood glucose variability using new metrics with continuous glucose monitoring data. J Diabetes Sci Technol. 2011; 5:871–878. PMID: 21880228.
Article
16. McGill JB, Cole TG, Nowatzke W, Houghton S, Ammirati EB, Gautille T, et al. Circulating 1,5-anhydroglucitol levels in adult patients with diabetes reflect longitudinal changes of glycemia: a U.S. trial of the GlycoMark assay. Diabetes Care. 2004; 27:1859–1865. PMID: 15277408.
Article
17. Moon JS, Lee SY, Nam CM, Choi JM, Choe BK, Seo JW, et al. 2007 Korean National Growth Charts: review of developmental process and an outlook. Korean J Pediatr. 2008; 51:1–25.
Article
18. Nowicka P, Santoro N, Liu H, Lartaud D, Shaw MM, Goldberg R, et al. Utility of hemoglobin A(1c) for diagnosing prediabetes and diabetes in obese children and adolescents. Diabetes Care. 2011; 34:1306–1311. PMID: 21515842.
Article
19. Kim WJ, Park CY. 1,5-Anhydroglucitol in diabetes mellitus. Endocrine. 2013; 43:33–40. PMID: 22847316.
Article
20. Watanabe M, Kokubo Y, Higashiyama A, Ono Y, Miyamoto Y, Okamura T. Serum 1,5-anhydro-D-glucitol levels predict first-ever cardiovascular disease: an 11-year population-based cohort study in Japan, the Suita study. Atherosclerosis. 2011; 216:477–483. PMID: 21414624.
Article
21. Buse JB, Freeman JL, Edelman SV, Jovanovic L, McGill JB. Serum 1,5-anhydroglucitol (GlycoMark ): a short-term glycemic marker. Diabetes Technol Ther. 2003; 5:355–363. PMID: 12828817.
22. Yamanouchi T, Akanuma H, Nakamura T, Akaoka I, Akanuma Y. Reduction of plasma 1,5-anhydroglucitol (1-deoxyglucose) concentration in diabetic patients. Diabetologia. 1988; 31:41–45. PMID: 3350220.
Article
23. Dungan KM. 1,5-anhydroglucitol (GlycoMark) as a marker of short-term glycemic control and glycemic excursions. Expert Rev Mol Diagn. 2008; 8:9–19. PMID: 18088226.
Article
24. Frattali AL, Wolf BA. 1,5-Anhydroglucitol: a novel serum marker for screening and monitoring diabetes mellitus? Clin Chem. 1994; 40(11 Pt 1):1991–1993. PMID: 7955366.
Article
25. Yamanouchi T, Akanuma Y, Toyota T, Kuzuya T, Kawai T, Kawazu S, et al. Comparison of 1,5-anhydroglucitol, HbA1c, and fructosamine for detection of diabetes mellitus. Diabetes. 1991; 40:52–57. PMID: 2015974.
Article
26. Yamanouchi T, Tachibana Y, Akanuma H, Minoda S, Shinohara T, Moromizato H, et al. Origin and disposal of 1,5-anhydroglucitol, a major polyol in the human body. Am J Physiol. 1992; 263(2 Pt 1):E268–E273. PMID: 1514606.
Article
27. Ouchi M, Oba K, Yamashita H, Okazaki M, Tsunoda M, Ohara M, et al. Effects of sex and age on serum 1,5-anhydroglucitol in nondiabetic subjects. Exp Clin Endocrinol Diabetes. 2012; 120:288–295. PMID: 22421984.
Article
28. Won JC, Park CY, Park HS, Kim JH, Choi ES, Rhee EJ, et al. 1,5-Anhydroglucitol reflects postprandial hyperglycemia and a decreased insulinogenic index, even in subjects with prediabetes and well-controlled type 2 diabetes. Diabetes Res Clin Pract. 2009; 84:51–57. PMID: 19187997.
Article
29. Stettler C, Stahl M, Allemann S, Diem P, Schmidlin K, Zwahlen M, et al. Association of 1,5-anhydroglucitol and 2-h postprandial blood glucose in type 2 diabetic patients. Diabetes Care. 2008; 31:1534–1535. PMID: 18426859.
Article
30. Schindhelm RK, Diamant M, Bilo HJ, Slingerland RJ. Association of 1,5-anhydroglucitol and 2-h postprandial blood glucose in type 2 diabetic patients: response to Stettler et al. Diabetes Care. 2008; 31:e89. author reply e90. PMID: 18955716.
31. Kishimoto M, Yamasaki Y, Kubota M, Arai K, Morishima T, Kawamori R, et al. 1,5-Anhydro-D-glucitol evaluates daily glycemic excursions in well-controlled NIDDM. Diabetes Care. 1995; 18:1156–1159. PMID: 7587851.
Article
32. Shah S, Kublaoui BM, Oden JD, White PC. Screening for type 2 diabetes in obese youth. Pediatrics. 2009; 124:573–579. PMID: 19620188.
Article
33. Edelman D, Olsen MK, Dudley TK, Harris AC, Oddone EZ. Utility of hemoglobin A1c in predicting diabetes risk. J Gen Intern Med. 2004; 19:1175–1180. PMID: 15610327.
Article
34. Pradhan AD, Rifai N, Buring JE, Ridker PM. Hemoglobin A1c predicts diabetes but not cardiovascular disease in nondiabetic women. Am J Med. 2007; 120:720–727. PMID: 17679132.
Article
35. Sato KK, Hayashi T, Harita N, Yoneda T, Nakamura Y, Endo G, et al. Combined measurement of fasting plasma glucose and A1C is effective for the prediction of type 2 diabetes: the Kansai Healthcare Study. Diabetes Care. 2009; 32:644–646. PMID: 19131461.
Article
36. Shimazaki T, Kadowaki T, Ohyama Y, Ohe K, Kubota K. Hemoglobin A1c (HbA1c) predicts future drug treatment for diabetes mellitus: a follow-up study using routine clinical data in a Japanese university hospital. Transl Res. 2007; 149:196–204. PMID: 17383593.
Article
37. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010; 33(Suppl 1):S62–S69. PMID: 20042775.
38. Tsukui S, Fukumura Y, Kobayashi I. Decreased serum 1,5-anhydroglucitol in nondiabetic subjects with a family history of NIDDM. Diabetes Care. 1996; 19:940–944. PMID: 8875086.
Article
39. Yamanouchi T, Inoue T, Ogata E, Kashiwabara A, Ogata N, Sekino N, et al. Post-load glucose measurements in oral glucose tolerance tests correlate well with 1,5-anhydroglucitol, an indicator of overall glycaemic state, in subjects with impaired glucose tolerance. Clin Sci (Lond). 2001; 101:227–233. PMID: 11524039.
Article
40. Yamanouchi T, Akaoka I. Clinical significance of plasma 1,5-anhydroglucitol analysis in the diagnosis of diabetes mellitus. Nihon Rinsho. 1990; 48(Suppl):374–380. PMID: 2086911.
Full Text Links
  • APEM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr