1. Khan FM, Doppke KP, Hogstrom KR, et al. Clinical electron-beam dosimetry: report of AAPM Radiation Therapy Committee Task Group No. 25. Med Phys. 18(1):73–109. 1991.
2. Kirova YM, Campana F, Fournier-Bidoz N, et al. Postmastectomy electron beam chest wall irradiation in women with breast cancer: a clinical step toward conformal electron therapy. Int J Radiat Oncol Biol Phys. 69(4):1139–1144. 2007.
3. Perkins GH, McNeese MD, Antolak JA, Buchholz TA, Strom EA, Hogstrom KR. A custom three-dimensional electron bolus technique for optimization of postmastectomy irradiation. Int J Radiat Oncol Biol Phys. 51(4):1142–1151. 2001.
Article
4. Low DA, Starkschall G, Bujnowski SW, Wang LL, Hogstrom KR. Electron bolus design for radiotherapy treatment planning: bolus design algorithms. Med Phys. 19(1):115–124. 1992.
Article
5. Zablow AI, Eanelli TR, Sanfilippo LJ. Electron beam therapy for skin cancer of the head and neck. Head Neck. 14(3):188–195. 1992.
Article
6. Hogstrom KR. Treatment planning in electron beam therapy. Front Radiat Ther Oncol. 25:30–52. ; discussion 61–33 (. 1991.
Article
7. Lief EP, Lo YC, Humm JL. Electron wedges for radiation therapy. Int J Radiat Oncol Biol Phys. 40(1):233–243. 1998.
Article
8. Ma CM, Pawlicki T, Lee MC, et al. Energy-and intensitymodulated electron beams for radiotherapy. Phys Med Biol. 45(8):2293–2311. 2000.
9. Kudchadker RJ, Hogstrom KR, Garden AS, McNeese MD, Boyd RA, Antolak JA. Electron conformal radiotherapy using bolus and intensity modulation. Int J Radiat Oncol Biol Phys. 53(4):1023–1037. 2002.
Article
10. Archambeau JO, Forell B, Doria R, Findley DO, Jurisch R, Jackson R. Use of variable thickness bolus to control electron beam penetration in chest wall irradiation. Int J Radiat Oncol Biol Phys. 7(6):835–842. 1981.
Article
11. Beach JL, Coffey CW, Wade JS. Individualized chest wall compensating bolus for electron irradiation following mastectomy: an ultrasound approach. Int J Radiat Oncol Biol Phys. 7(11):1607–1611. 1981.
12. Kesner SB, Howe RD. Design Principles for Rapid Prototyping Forces Sensors using 3D Printing. IEEE ASME Trans Mechatron PP(99): 1–5 (. 2011.
13. Ju SG, Kim MK, Hong CS, et al. New technique for developing a proton range compensator with use of a 3-dimensional printer. Int J Radiat Oncol Biol Phys. 88(2):453–458. 2014.
Article
14. Burleson S, Baker J, Hsia AT, Xu Z. Use of 3D printers to create a patient-specific 3D bolus for external beam therapy. J Appl Clin Med Phys. 16(3):5247. 2015.
Article
15. Harris BD, Nilsson S, Poole CM. A feasibility study for using ABS plastic and a low-cost 3D printer for patient-specific brachytherapy mould design. Australas Phys Eng Sci Med. 38(3):399–412. 2015.
Article
16. Lindsay C, Kumlin J, Jirasek A, et al. 3D printed plastics for beam modulation in proton therapy. Phys Med Biol. 60(11):N231–240. 2015.
Article
17. Zarghami N, Jensen MD, Talluri S, et al. Technical Note: Immunohistochemical evaluation of mouse brain irradiation targeting accuracy with 3D-printed immobilization device. Med Phys. 42(11):6507–6513. 2015.
Article
18. Zou W, Fisher T, Zhang M, et al. Potential of 3D printing technologies for fabrication of electron bolus and proton compensators. J Appl Clin Med Phys. 16(3):4959. 2015.
Article
19. Kim M, Ju SG, Chung K, et al. Development of a 3D optical scanning-based automatic quality assurance system for proton range compensators. Med Phys. 42(2):1071–1079. 2015.
Article
20. Alexa M, Behr J, Cohen-Or D, Fleishman S, Levin D, Silva CT. Computing and rendering point set surfaces. Ieee Transactions on Visualization and Computer Graphics. 9(1):3–15. 2003.
Article
21. Wikipedia. http://en.wikipedia.org/wiki/Stereolithography.
22. Hogstrom KR, Mills MD, Meyer JA, et al. Dosimetric evaluation of a pencil-beam algorithm for electrons employing a two-dimensional heterogeneity correction. Int J Radiat Oncol Biol Phys. 10(4):561–569. 1984.
Article
23. Low DA, Harms WB, Mutic S, Purdy JA. A technique for the quantitative evaluation of dose distributions. Med Phys. 25(5):656–661. 1998.
Article