Korean J Urol.  2012 Nov;53(11):774-778.

Relationships between Prostate-Specific Antigen, Prostate Volume, and Components of Metabolic Syndrome in Healthy Korean Men

Affiliations
  • 1Department of Urology, Yonsei University Wonju College of Medicine, Wonju, Korea. chc7174@yonsei.ac.kr

Abstract

PURPOSE
Metabolic syndrome (MS) plays a potential role in the etiology of benign prostatic hyperplasia (BPH). Recent studies have reported on an association between MS and BPH. However, there has been no consensus on recent results. This study was conducted to evaluate the associations among prostate-specific antigen (PSA), prostate volume (PV), and metabolic components in men who visited our health promotion center.
MATERIALS AND METHODS
During the period from January 2005 to December 2010, 521 consecutive men (age range, 40 to 70 years) who underwent transrectal ultrasonography were enrolled in this retrospective study. The health screening program includes blood pressure, body measurements (height, weight, waist circumference, body mass index), biochemical analysis (serum glucose, total cholesterol, triglycerides, high-density and low-density lipoprotein cholesterol, fasting plasma glucose, tumor markers), stool and urine analysis, and a detailed clinical examination.
RESULTS
The serum PSA level and PV were significantly higher in patients with MS than in patients without MS, retrospectively (p<0.001, p<0.001). Patients with more than one metabolic component were significantly more likely to have a larger PV and higher serum PSA level. The serum PSA level and PV were increased in a similar manner with the increasing sum of MS components (p<0.0001, p<0.0001).
CONCLUSIONS
The MS components were associated with larger PV and higher serum PSA level. Therefore, each MS component could be an important factor in BPH development and management.

Keyword

Metabolic syndrome X; Prostate-specific antigen; Prostatic hyperplasia

MeSH Terms

Blood Pressure
Cholesterol
Consensus
Fasting
Glucose
Health Promotion
Humans
Lipoproteins
Male
Mass Screening
Metabolic Syndrome X
Plasma
Prostate
Prostate-Specific Antigen
Prostatic Hyperplasia
Retrospective Studies
Triglycerides
Waist Circumference
Cholesterol
Glucose
Lipoproteins
Prostate-Specific Antigen
Triglycerides

Reference

1. Berry SJ, Coffey DS, Walsh PC, Ewing LL. The development of human benign prostatic hyperplasia with age. J Urol. 1984. 132:474–479.
2. Issa MM, Regan TS. Medical therapy for benign prostatic hyperplasia: present and future impact. Am J Manag Care. 2007. 13:Suppl 1. S4–S9.
3. Mongiu AK, McVary KT. Lower urinary tract symptoms, benign prostatic hyperplasia, and obesity. Curr Urol Rep. 2009. 10:247–253.
4. Ozden C, Ozdal OL, Urgancioglu G, Koyuncu H, Gokkaya S, Memis A. The correlation between metabolic syndrome and prostatic growth in patients with benign prostatic hyperplasia. Eur Urol. 2007. 51:199–203.
5. Lee C, Kozlowski JM, Grayhack JT. Etiology of benign prostatic hyperplasia. Urol Clin North Am. 1995. 22:237–246.
6. Ziada A, Rosenblum M, Crawford ED. Benign prostatic hyperplasia: an overview. Urology. 1999. 53:3 Suppl 3a. 1–6.
7. Hammarsten J, Hogstedt B. Clinical, anthropometric, metabolic and insulin profile of men with fast annual growth rates of benign prostatic hyperplasia. Blood Press. 1999. 8:29–36.
8. Jeong IG, Hwang SS, Kim HK, Ahn H, Kim CS. The association of metabolic syndrome and its components with serum prostate-specific antigen levels in a Korean-screened population. Cancer Epidemiol Biomarkers Prev. 2010. 19:371–380.
9. Han JH, Chang IH, Ahn SH, Kwon OJ, Bang SH, Choi NY, et al. Association between serum prostate-specific antigen level, liver function tests and lipid profile in healthy men. BJU Int. 2008. 102:1097–1101.
10. Hammarsten J, Hogstedt B, Holthuis N, Mellstrom D. Components of the metabolic syndrome-risk factors for the development of benign prostatic hyperplasia. Prostate Cancer Prostatic Dis. 1998. 1:157–162.
11. Eom CS, Park JH, Cho BL, Choi HC, Oh MJ, Kwon HT. Metabolic syndrome and accompanying hyperinsulinemia have favorable effects on lower urinary tract symptoms in a generally healthy screened population. J Urol. 2011. 186:175–179.
12. Bosch RJ. Pathogenesis of benign prostatic hyperplasia. Eur Urol. 1991. 20:Suppl 1. 27–30.
13. Hammarsten J, Hogstedt B. Calculated fast-growing benign prostatic hyperplasia: a risk factor for developing clinical prostate cancer. Scand J Urol Nephrol. 2002. 36:330–338.
14. Hammarsten J, Hogstedt B. Hyperinsulinaemia as a risk factor for developing benign prostatic hyperplasia. Eur Urol. 2001. 39:151–158.
15. Hammarsten J, Hogstedt B. Clinical, haemodynamic, anthropometric, metabolic and insulin profile of men with high-stage and high-grade clinical prostate cancer. Blood Press. 2004. 13:47–55.
16. Matsuda T, Abe H, Suda K. Relation between benign prostatic hyperplasia and obesity and estrogen. Rinsho Byori. 2004. 52:291–294.
17. Gupta A, Gupta S, Pavuk M, Roehrborn CG. Anthropometric and metabolic factors and risk of benign prostatic hyperplasia: a prospective cohort study of Air Force veterans. Urology. 2006. 68:1198–1205.
18. DeFronzo RA, Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care. 1991. 14:173–194.
19. Baillargeon J, Pollock BH, Kristal AR, Bradshaw P, Hernandez J, Basler J, et al. The association of body mass index and prostate-specific antigen in a population-based study. Cancer. 2005. 103:1092–1095.
20. Kristal AR, Chi C, Tangen CM, Goodman PJ, Etzioni R, Thompson IM. Associations of demographic and lifestyle characteristics with prostate-specific antigen (PSA) concentration and rate of PSA increase. Cancer. 2006. 106:320–328.
21. Becker S, Dossus L, Kaaks R. Obesity related hyperinsulinaemia and hyperglycaemia and cancer development. Arch Physiol Biochem. 2009. 115:86–96.
22. Giovannucci E, Rimm EB, Chute CG, Kawachi I, Colditz GA, Stampfer MJ, et al. Obesity and benign prostatic hyperplasia. Am J Epidemiol. 1994. 140:989–1002.
23. Golomb E, Rosenzweig N, Eilam R, Abramovici A. Spontaneous hyperplasia of the ventral lobe of the prostate in aging genetically hypertensive rats. J Androl. 2000. 21:58–64.
24. Rahman NU, Phonsombat S, Bochinski D, Carrion RE, Nunes L, Lue TF. An animal model to study lower urinary tract symptoms and erectile dysfunction: the hyperlipidaemic rat. BJU Int. 2007. 100:658–663.
25. Hochberg DA, Armenakas NA, Fracchia JA. Relationship of prostate-specific antigen and prostate volume in patients with biopsy proven benign prostatic hyperplasia. Prostate. 2000. 45:315–319.
26. Vikram A, Jena GB, Ramarao P. Increased cell proliferation and contractility of prostate in insulin resistant rats: linking hyperinsulinemia with benign prostate hyperplasia. Prostate. 2010. 70:79–89.
27. Bosch JL, Hop WC, Bangma CH, Kirkels WJ, Schroder FH. Prostate specific antigen in a community-based sample of men without prostate cancer: correlations with prostate volume, age, body mass index, and symptoms of prostatism. Prostate. 1995. 27:241–249.
28. Roehrborn CG, Boyle P, Gould AL, Waldstreicher J. Serum prostate-specific antigen as a predictor of prostate volume in men with benign prostatic hyperplasia. Urology. 1999. 53:581–589.
29. Mochtar CA, Kiemeney LA, van Riemsdijk MM, Barnett GS, Laguna MP, Debruyne FM, et al. Prostate-specific antigen as an estimator of prostate volume in the management of patients with symptomatic benign prostatic hyperplasia. Eur Urol. 2003. 44:695–700.
Full Text Links
  • KJU
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr