1. Gambhir SS, Barrio JR, Herschman HR, Phelps ME. Assays for noninvasive imaging of reporter gene expression. Nucl Med Biol. 26:481–490. 1999.
Article
2. Phelps ME. Nuclear medicine, molecular imaging, and molecular medicine. J Nucl Med. 43:13N–14N. 2002.
3. Rudin M, Weissleder R. Molecular imaging in drug discovery and development. Nat Rev Drug Discov. 2:123–131. 2003.
Article
4. Cherry S. In vivo molecular and genomic imaging: new challenges for imaging physics. Phys Med Biol. 49:R13–R48. 2004.
5. Fullerton GD, Hazle JD. The development of technologies for molecular imaging should be driven principally by biological questions to be addressed rather than by simply modifying existing imaging technologies. For the proposition. Med Phys. 32:1231–1233. 2005.
6. Schelbert HR. Nuclear Medicine at a Crossroads. J Nucl Med. 52:10S–15S. 2011.
Article
7. Cherry SR, Sorenson JA, Phelps ME. Physics in Nuclear Medicine. 3rd ed.;Saunders;2003.
8. Phelps ME. PET – molecular imaging and its biological applications. Springer;New York: 2004.
9. Bailey DL, Townsend DW, Valk PE, Maisey MN. Positron emission tomography – basic sciences. Springer Longdon;2005.
10. Todd RW, Nightingale JM, Everett DB. A proposed Gamma camera. Nature. 251:132–134. 1974.
11. Singh M. An electronically collimated gamma camera for single photon emission computed tomography: Part1 and 2. Med Phys. 10:421–427. 1983.
12. Phillips GW. Gamma-ray imaging with Compton cameras. Nucl Instr and Meth B. 99:674–677. 1995.
Article
13. Yang YF, Gono Y, Motomura S, Enomoto S, Yano Y. A Compton camera for multitracer imaging. IEEE Trans Nucl Sci. 48:656–661. 2001.
Article
14. Motomura S, Kanayama Y, Haba H, Watanabe Y, Enomoto S. Multiple molecular simultaneous imaging in a live mouse using semiconductor Compton camera. J Anal AT Spectrom. 23:1089–1092. 2008.
Article
15. Motomura S, Fukuchi T, Kanayama Y, Haba H, Watanabe Y, Enomoto S. Three-dimensional tomographic imaging by semiconductor Compton camera GREI for multiple molecular simultaneous imaging. Nucl Sci Symp Conf Rec.2009. Orlando, FL, USA, pp.3330–3332.
16. Seo H, Kim CH, Park JH, et al. Multitracing capability of double-scattering Compton imager with NaI(Tl) scintillator absorber. IEEE Trans Nucl Sci. 57:1420–1425. 2010.
Article
17. Uche CZ, Round WH, Cree MJ. Evaluation of detector material and radiation source position on Compton camera's ability for multitracer imaging. Australas Phys Eng Sci Med. 35:357–364. 2012.
Article
18. Motomura S, Kanayama Y, Hiromura M, et al. Improved imaging performance of a semiconductor Compton camera GREI makes for a new methodology to integrate bio-metal analysis and molecular imaging technology in living organisms. J Anal At Spectrom. 28:934–939. 2013.
Article
19. Lee SH, Park JH, Park SH, et al. CIS – a GUI-based software system for Monte Carlo simulation of Compton camera. Nucl Technol. 168:55–60. 2009.
20. Wilderman SJ, Rogers WL, Knoll GF, Engdahl JC. Fast algorithm for list mode back-projection of Compton scatter camera data. IEEE Trans Nucl Sci. 45:957–962. 1998.
Article
21. Kim SM, Lee JS, Lee CS, et al. Fully three-dimensional OSEM-based image reconstruction for Compton imaging using optimized ordering schemes. Phys Med Biol. 55:5007–5027. 2010.
Article
22. Orlov SS. Theory of three-dimensional reconstruction. 1. Conditions for a complete set of projections. Sov Phys-Crystallogr. 20:312–314. 1975.
23. Nguyen V-G, Lee S-J, Lee MN. GPU-accelerated 3D Bayesian image reconstruction from Compton scattered data. Phys Med Biol. 56:2817–2836. 2011.
Article
24. Lowe VJ, Greer KL, Hanson MW, Jaszczak RJ, Coleman RE. Cardiac phantom evaluation of simultaneously acquired dual-isotope rest thallium-201/stress technetium-99m SPECT images. J Nucl Med. 34:1998–2006. 1993.
25. Berman DS, Kiat H, Friedman JD, et al. Separate acquisition rest thallium-201/stress technetium-99m sestamibi dual-isotope myocardial perfusion single-photon emission computed tomography: a clinical validation study. J American College of Cardio. 22:1455–1464. 1993.
Article
26. Cao ZJ, Chen CC, Maunoury C, Holder LE, Abraham TC, Tehan A. Phantom evaluation of simultaneous thallium-201/technetium-99m aquisition in single-photon emission tomography. European J Nucl Med. 23:1514–1520. 1996.
Article
27. Siebelink HM, Natale D, Sinusas AJ, Wackers F. Quantitative comparison of single-isotope and dual-isotope stressrest single-photon emission computed tomographic imaging for reversibility of defects. J Nucl Cardio. 3:483–493. 1996.
Article
28. Hannequin P, Weinmann P, Mas J, Vinot S. Preliminary clinical results of photon energy recovery in simultaneous rest TI-201/stress Tc-99m sestamibi myocardial SPECT. J Nucl Cardio. 8:144–151. 2001.
29. Segall G. Assessment of myocardial viability by positron emission tomography. Nucl Med Commun. 23:323–330. 2002.
Article
30. Groutars RG, Verzijlbergen FJ, Zwinderman AH, et al. Incremental prognostic value of myocardial SPET with dual-isotope rest 201Tl/stress 99mTc-tetrofosmin. European J Nucl Med. 29:46–52. 2002.
Article
31. Weinmann P, Faraggi M, Moretti J-L, Hannequin P. Clinical validation of simultaneous dual-isotope myocardial scintigraphy. European J Nucl Med and Molecular Imag. 30:25–31. 2003.
Article