1. Mobit PN, Nahum AE, Mayles P. A MonteCarlo study of quality dependence factors of common TLD materials in photon and electron beams. Phys Med Biol. 43:2015–2032. 1998.
2. Kirby TH, Hanson WF, Johnston DA. Uncertainty analysis of absorbed dose calculations from thermoluminescence dosimeters. Med Phys. 19:1427–1433. 1992.
Article
3. Rah JE, Kim SY, Cheong KH, et al. Feasibility study of radiophotoluminescent glass rod dosimeter postal dose intercomparison for high energy photon beam. Appl Radiat Isotopes. 67:324–328. 2009.
Article
4. Rah JE, Suh WS, Shin DO, et al. Determination of output factors for the gamma knife using a radiophotoluminescent glass rod detector. Korean J Med Phys. 18:13–19. 2007.
5. Ko YE, Park SH, Choi BJ, et al. Comparison of skin dose measurement using glass rod dosimeter and diode for breast cancer patients. Korean J Med Phys. 19:9–13. 2008.
6. Raj V, John M, Brenden G, Michael W. In vivo prostate IMRT dosimetry with MOSFET detectors using brass buildup caps. J App Cli Med Phys. 7:22–32. 2006.
7. Shih H, Chien Y, Tien Y, et al. Clinical application of radiophotoluminescent glass dosimeter for dose verification of prostate HDR procedure. Med Phys. 35:5558–5564. 2008.
8. Arakia F, Moribe N, Shimonobou T, Yamashita Y. Dosimetric properties of radiophotoluminescent glass rod dosimeter in high-energy photon beams from a linear accelerator and cyber-knife. Med Phys. 31:1980–1986. 2004.
9. Mizunoa H, Kanaia T, Kusanob Y, et al. Feasibility study of glass dosimeter postal dosimetry audit of high-energy radiotherapy photon beams. Radiother Oncol. 86:258–263. 2007.
10. Technical Report. Explanation material of RPL glass dosimeter. Small Element System. Asahi Techno Glass Corporation, Tokyo, Japan. 2000.