1. Rao SM, Leo GJ, Bernardin L, Unverzagt F. Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns, and prediction. Neurology. 1991; 41:685–691.
Article
2. Rao SM, Leo GJ, Ellington L, Nauertz T, Bernardin L, Unverzagt F. Cognitive dysfunction in multiple sclerosis. II. Impact on employment and social functioning. Neurology. 1991; 41:692–696.
Article
3. Amato MP, Ponziani G, Siracusa G, Sorbi S. Cognitive dysfunction in early-onset multiple sclerosis: a reappraisal after 10 years. Arch Neurol. 2001; 58:1602–1606.
Article
4. Bobholz JA, Rao SM. Cognitive dysfunction in multiple sclerosis: a review of recent developments. Curr Opin Neurol. 2003; 16:283–288.
Article
5. Wishart H, Sharpe D. Neuropsychological aspects of multiple sclerosis: a quantitative review. J Clin Exp Neuropsychol. 1997; 19:810–824.
Article
6. Deloire M, Ruet A, Hamel D, Bonnet M, Brochet B. Early cognitive impairment in multiple sclerosis predicts disability outcome several years later. Mult Scler. 2010; 16:581–587.
Article
7. Benedict RH, Fischer JS, Archibald CJ, Arnett PA, Beatty WW, Bobholz J, et al. Minimal neuropsychological assessment of MS patients: a consensus approach. Clin Neuropsychol. 2002; 16:381–397.
Article
8. Oken BS. Endogenous event-related potentials. In : Chiappa KH, editor. Evoked Potentials in Clinical Medicine. 2nd ed. New York, NY: Raven Press;1990. p. 563–592.
9. Oishi M, Mochizuki Y, Du C, Takasu T. Contingent negative variation and movement-related cortical potentials in parkinsonism. Electroencephalogr Clin Neurophysiol. 1995; 95:346–349.
Article
10. Drake ME Jr, Weate SJ, Newell SA. Contingent negative variation in epilepsy. Seizure. 1997; 6:297–301.
Article
11. van Deursen JA, Vuurman EF, Smits LL, Verhey FR, Riedel WJ. Response speed, contingent negative variation and P300 in Alzheimer's disease and MCI. Brain Cogn. 2009; 69:592–599.
Article
12. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011; 69:292–302.
Article
13. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983; 33:1444–1452.
Article
14. Umaç A. Normal deneklerde frontal hasarlara duyarlı bazı testlerde performansa yaş ve eğitimin etkisi [dissertation]. İstanbul: İstanbul Üniversitesi;1997.
15. Ozakbas S, Ormeci B, Akdede BB, Alptekin K, Idiman E. Utilization of the auditory consonant trigram test to screen for cognitive impairment in patients with multiple sclerosis: comparison with the paced auditory serial addition test. Mult Scler. 2004; 10:686–689.
Article
16. Hisli N. Beck Depresyon Envanteri'nin üniversite öğrencileri için geçerliği, güvenirliği. Psikoloji Dergisi. 1989; 7:3–13.
17. Winkelmann A, Engel C, Apel A, Zettl UK. Cognitive impairment in multiple sclerosis. J Neurol. 2007; 254:Suppl 2. II35–II42.
Article
18. Stroop JR. Studies of interference in serial verbal reactions. J Exp Psychol. 1935; 18:643–662.
Article
19. Denney DR, Lynch SG. The impact of multiple sclerosis on patients' performance on the Stroop Test: processing speed versus interference. J Int Neuropsychol Soc. 2009; 15:451–458.
Article
20. Benton AL. Development of a multilingual aphasia battery. Progress and problems. J Neurol Sci. 1969; 9:39–48.
21. Mohr DC, Goodkin DE, Likosky W, Beutler L, Gatto N, Langan MK. Identification of Beck Depression Inventory items related to multiple sclerosis. J Behav Med. 1997; 20:407–414.
22. Ashton H, Marsh VR, Millman JE, Rawlins MD, Telford R, Thompson JW. Biphasic dose-related responses of the CNV (contingent negative variation) to I.V. nicotine in man. Br J Clin Pharmacol. 1980; 10:579–589.
Article
23. Bruce JM, Harrington CJ, Foster S, Westervelt HJ. Common blood laboratory values are associated with cognition among older inpatients referred for neuropsychological testing. Clin Neuropsychol. 2009; 23:909–925.
Article
24. Finch H. Comparison of the Performance of Nonparametric and Parametric MANOVA Test Statistics when Assumptions Are Violated. Methodology (Gott). 2007; 1:27–38.
Article
25. Kiiski H, Reilly RB, Lonergan R, Kelly S, O'Brien M, Kinsella K, et al. Change in PASAT performance correlates with change in P3 ERP amplitude over a 12-month period in multiple sclerosis patients. J Neurol Sci. 2011; 305:45–52.
Article
26. Matas CG, Matas SL, Oliveira CR, Gonçalves IC. Auditory evoked potentials and multiple sclerosis. Arq Neuropsiquiatr. 2010; 68:528–534.
Article
27. Ivica N, Titlic M, Pavelin S. P300 wave changes in patients with multiple sclerosis. Acta Inform Med. 2013; 21:205–207.
Article
28. Aminoff JC, Goodin DS. Long-latency cerebral event-related potentials in multiple sclerosis. J Clin Neurophysiol. 2001; 18:372–377.
Article
29. Gonzalez-Rosa JJ, Vazquez-Marrufo M, Vaquero E, Duque P, Borges M, Gomez-Gonzalez CM, et al. Cluster analysis of behavioural and event-related potentials during a contingent negative variation paradigm in remitting-relapsing and benign forms of multiple sclerosis. BMC Neurol. 2011; 11:64.
Article
30. Vázquez-Marrufo M, Galvao-Carmona A, González-Rosa JJ, Hidalgo-Muñoz AR, Borges M, Ruiz-Peña JL, et al. Neural correlates of alerting and orienting impairment in multiple sclerosis patients. PLoS One. 2014; 9:e97226.
Article
31. Bonnet MC, Deloire MS, Salort E, Dousset V, Petry KG, Brochet B, et al. Evidence of cognitive compensation associated with educational level in early relapsing-remitting multiple sclerosis. J Neurol Sci. 2006; 251:23–28.
Article
32. Staffen W, Mair A, Zauner H, Unterrainer J, Niederhofer H, Kutzelnigg A, et al. Cognitive function and fMRI in patients with multiple sclerosis: evidence for compensatory cortical activation during an attention task. Brain. 2002; 125(Pt 6):1275–1282.
Article
33. Forn C, Barros-Loscertales A, Escudero J, Benlloch V, Campos S, Antònia Parcet M, et al. Compensatory activations in patients with multiple sclerosis during preserved performance on the auditory N-back task. Hum Brain Mapp. 2007; 28:424–430.
Article
34. Bonnet MC, Allard M, Dilharreguy B, Deloire M, Petry KG, Brochet B. Cognitive compensation failure in multiple sclerosis. Neurology. 2010; 75:1241–1248.
Article
35. Bares M, Rektor I, Kanovský P, Streitová H. Cortical and subcortical distribution of middle and long latency auditory and visual evoked potentials in a cognitive (CNV) paradigm. Clin Neurophysiol. 2003; 114:2447–2460.
Article
36. Nagai Y, Critchley HD, Featherstone E, Fenwick PB, Trimble MR, Dolan RJ. Brain activity relating to the contingent negative variation: an fMRI investigation. Neuroimage. 2004; 21:1232–1241.
Article
37. Minagar A, Barnett MH, Benedict RH, Pelletier D, Pirko I, Sahraian MA, et al. The thalamus and multiple sclerosis: modern views on pathologic, imaging, and clinical aspects. Neurology. 2013; 80:210–219.
Article
38. Brass SD, Benedict RH, Weinstock-Guttman B, Munschauer F, Bakshi R. Cognitive impairment is associated with subcortical magnetic resonance imaging grey matter T2 hypointensity in multiple sclerosis. Mult Scler. 2006; 12:437–444.
Article
39. Batista S, Zivadinov R, Hoogs M, Bergsland N, Heininen-Brown M, Dwyer MG, et al. Basal ganglia, thalamus and neocortical atrophy predicting slowed cognitive processing in multiple sclerosis. J Neurol. 2012; 259:139–146.
Article
40. Benedict RH, Hulst HE, Bergsland N, Schoonheim MM, Dwyer MG, Weinstock-Guttman B, et al. Clinical significance of atrophy and white matter mean diffusivity within the thalamus of multiple sclerosis patients. Mult Scler. 2013; 19:1478–1484.
Article
41. Rocca MA, Mesaros S, Pagani E, Sormani MP, Comi G, Filippi M. Thalamic damage and long-term progression of disability in multiple sclerosis. Radiology. 2010; 257:463–469.
Article