Korean J Physiol Pharmacol.  2001 Apr;5(2):123-131.

Electrical stimulation can facilitate vestibular compensation following unilateral labyrinthectomy in rats

Affiliations
  • 1Department of Physiology, Wonkwang University School of Medicine, Iksan, South Korea. byungp@wonkwang.ac.kr

Abstract

To investigate the effects of electrical stimulation on vestibular compensation, which is the recovery of vestibular symptoms following unilateral labyrinthectomy (UL), intermittent electrical stimulation was applied to the injured vestibular portion in Sprague-Dawley rats. Vestibuloocular and vestibulospinal reflexes, electrical activity and expression of c-Fos protein in medial vestibular nuclei (MVN) were measured with time following UL. Spontaneous nystagmus occurred with frequency of 2.9+/-0.2 beats/sec at 2 hours after UL and disappeared after 72 hours. Electrical stimulation decreased the frequency of nystagmus significantly till 24 hours after UL. Roll head deviation was 107+/-9.7degree at 2 hours after UL and the deviation was maintained till 72 hours, but electrical stimulation decreased the deviation significantly 6 hours after UL. Resting activity of type I neurons in ipsilateral MVN to the injured vestibular side decreased significantly compared with control at 6 and 24 hours after UL, but the activity of type I neurons was recovered to control level by electrical stimulation at 24 hours after UL. Gain of type I neurons induced by sinusoidal rotation of 0.1 Hz decreased significantly till 24 hours after UL, but electrical stimulation restored the activity at 24 hours. The gain of type II neurons decreased significantly at 6 hours after UL, but electrical stimulation restored the activity. Expression of c-Fos protein was asymmetric between bilateral MVN till 24 hours after UL, but the asymmetry disappeared by electrical stimulation 6 hours after UL. These results suggest that electrical stimulation to the injured vestibular portion facilitates vestibular compensation following UL by restoration of symmetry of neuronal activity between bilateral vestibular nuclei resulting from increased activity in ipsilateral vestibular nuclei to the injured side.

Keyword

Vestibular compensation; Vestibuloocular reflex; Vestibulospinal reflex; Neuronal activity; c-Fos protein

MeSH Terms

Animals
Compensation and Redress*
Electric Stimulation*
Head
Neurons
Rats*
Rats, Sprague-Dawley
Reflex
Reflex, Vestibulo-Ocular
Vestibular Nuclei
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr