1. Esik O, Tusnady G, Daubner K, Nemeth G, Fuzy M, Szentirmay Z. Survival chance in papillary thyroid cancer in Hungary: individual survival probability estimation using the Markov method. Radiother Oncol. 1997; 44(3):203–212.
Article
2. Wang SJ, Wissel AR, Luh JY, Fuller CD, Kalpathy-Cramer J, Thomas CR Jr. An interactive tool for individualized estimation of conditional survival in rectal cancer. Ann Surg Oncol. 2011; 18(6):1547–1552.
Article
3. Ravdin PM, Siminoff LA, Davis GJ, Mercer MB, Hewlett J, Gerson N, et al. Computer program to assist in making decisions about adjuvant therapy for women with early breast cancer. J Clin Oncol. 2001; 19(4):980–991.
Article
4. Lee ET, Wang JW. Identification of prognostic factors related to survival time: Cox proportional hazards model. Statistical methods for survival data analysis. Hoboken (NJ): Wiley;2003. p. 298–338.
5. Wishart GC, Azzato EM, Greenberg DC, Rashbass J, Kearins O, Lawrence G, et al. PREDICT: a new UK prognostic model that predicts survival following surgery for invasive breast cancer. Breast Cancer Res. 2010; 12(1):R1.
Article
6. Lundin J, Lundin M, Isola J, Joensuu H. A web-based system for individualised survival estimation in breast cancer. BMJ. 2003; 326(7379):29.
Article
7. Michaelson JS, Chen LL, Bush D, Fong A, Smith B, Younger J. Improved web-based calculators for predicting breast carcinoma outcomes. Breast Cancer Res Treat. 2011; 128(3):827–835.
Article
8. Zhang X. Comparison of restricted mean survival times between treatments based on a stratified Cox model. Bio-Algorithms Med-Sys. 2013; 9(4):183–189.
Article
9. Endo A, Takeo S, Tanaka H. predicting breast cancer survivability: comparison of five data mining techniques. J Korean Soc Med Inform. 2007; 13(2):177–180.
Article