Chonnam Med J.  2009 Dec;45(3):145-153. 10.4068/cmj.2009.45.3.145.

Recent Advances in Gene Therapy Targeted to Intracellular Calcium Transport for Heart Failure

Affiliations
  • 1Department of Internal Medicine, Chungbuk National University School of Medicine, Cheongju, Korea.
  • 2Chungbuk Regional Cardiac Disease Center, Chungbuk National University Hospital, Cheongju, Korea. drcorazon@hanmail.net

Abstract

Heart failure is a major health problem in developed countries. As a result of the increased prevalence of hypertension, diabetes mellitus, and chronic renal failure and the improved initial survival of patients with acute myocardial infarction or chronic ischemic heart disease, the prevalence of heart failure is continuously increasing. Therefore, the socioeconomic burden of controlling heart failure in developed countries is steeply increasing as well. Even with advanced treatment options, e.g., pharmacotherapy including betaadrenergic blocking agents, renin-angiotensin system blockers, mechanical cardiac assist devices, cardiac resynchronization therapy, and finally, cardiac transplantation, the 5-year survival rate of advanced heart failure is still about 50%. Other than the above classic treatment modalities in heart failure, cell or gene therapy has been recommended as a new, investigational treatment option for this disease. With increasing knowledge about the molecular and genetic mechanisms of heart failure, gene delivering systems, and the development of biocompatible biomaterial gene transfection molecules, gene therapy has fabulous academic interest for treating chronic, advanced, non-optional heart failure patients.

Keyword

Gene therapy; Heart failure; Calcium

MeSH Terms

Calcium
Cardiac Resynchronization Therapy
Developed Countries
Diabetes Mellitus
Genetic Therapy
Heart
Heart Failure
Heart Transplantation
Humans
Hypertension
Kidney Failure, Chronic
Myocardial Infarction
Myocardial Ischemia
Prevalence
Renin-Angiotensin System
Survival Rate
Therapies, Investigational
Transfection
Calcium

Reference

1. Fauci AS, Braunwald E, Kasper DL, Hauser SL, Longo DL, Jameson JL, et al. Harrison's Principles of Internal Medicine. 2008. 17th ed. New York: McGraw Hill Medical;1443–1444.
2. Miyamoto MI, del Monte F, Schmidt U, DiSalvo TS, Kang ZB, Matsui T, et al. Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc Natl Acad Sci USA. 2000. 97:793–798.
Article
3. Maurice JP, Hata JA, Shah AS, White DC, McDonald PH, Dolber PC, et al. Enhancement of cardiac function after adenoviral-mediated in vivo intracoronary beta2-adrenergic receptor gene delivery. J Clin Invest. 1999. 104:21–29.
Article
4. Ding L, Dong L, Chen X, Zhang L, Xu X, Ferro A, et al. Increased expression of integrin-linked kinase attenuates left ventricular remodeling and improves cardiac function after myocardial infarction. Circulation. 2009. 120:764–773.
Article
5. Samuel SM, Akita Y, Paul D, Thirunavukkarasu M, Zhan L, Sudhakaran PR, et al. Co-administration of Adenoviral VEGF and Ang-1 Enhances Vascularization and Reduces Ventricular Remodeling in the Infarcted Myocardium of Type I Diabetic Rats. Diabetes. 2009. [Epub ahead of print].
6. Mishra PK, Tyagi N, Kumar M, Tyagi SC. MicroRNAs as a therapeutic target for cardiovascular diseases. J Cell Mol Med. 2009. 13:778–789.
Article
7. Vinge LE, Raake PW, Koch WJ. Gene therapy in heart failure. Circ Res. 2008. 102:1458–1470.
Article
8. Hajjar RJ, Zsebo K, Deckelbaum L, Thompson C, Rudy J, Yaroshinsky A, et al. Design of a phase1/2 trial of intracoronary administration of AAV1/SERCA2a in patients with heart failure. J Card Fail. 2008. 14:355–367.
Article
9. Hajjar RJ, Schmidt U, Matsui T, Guerrero JL, Lee KH, Gwathmey JK, et al. Modulation of ventricular function through gene transfer in vivo. Proc Natl Acad Sci USA. 1998. 95:5251–5256.
10. Raake P, von Degenfeld G, Hinkel R, Vachenauer R, Sander T, Beller S, et al. Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins: comparison with surgical and percutaneous intramyocardial gene delivery. J Am Coll Cardiol. 2004. 44:1124–1129.
Article
11. Fuchs D, Dib N, Cohen BM, Okubagzi P, Diethrich EB, Campbell A, et al. A randomized, double-blind, placebo-controlled, multicenter, pilot study of the safety and feasibility of catheter-based intramyocardial injection of AdVEGF121 in patients with refractory advanced coronary artery disease. Catheter Cardiovasc Interv. 2006. 68:372–378.
Article
12. Roques C, Salmon A, Fiszman MY, Fattal E, Fromes Y. Intrapericardial administration of novel DNA formulations based on thermosensitive Poloxamer 407 gel. Int J Pharm. 2007. 331:220–223.
Article
13. Kaye DM, Preovolos A, Marshall T, Byrne M, Hoshijima M, Hajjar R, et al. Percutaneous cardiac recirculation-mediated gene transfer of an inhibitory phospholamban peptide reverses advanced heart failure in large animals. J Am Coll Cardiol. 2007. 50:253–260.
Article
14. Schwinger RH, Münch G, Bölck B, Karczewski P, Krause EG, Erdmann E. Reduced Ca(2+)-sensitivity of SERCA 2a in failing human myocardium due to reduced serin-16 phospholamban phosphorylation. J Mol Cell Cardiol. 1999. 31:479–491.
Article
15. Desantiago J, Ai X, Islam M, Acuna G, Ziolo MT, Bers DM, et al. Arrhythmogenic effects of beta2-adrenergic stimulation in the failing heart are attributable to enhanced sarcoplasmic reticulum Ca load. Circ Res. 2008. 102:1389–1397.
Article
16. Weisser-Thomas J, Piacentino V 3rd, Gaughan JP, Margulies K, Houser SR. Calcium entry via Na/Ca exchange during the action potential directly contributes to contraction of failing human ventricular myocytes. Cardiovasc Res. 2003. 15:974–985.
Article
17. El-Armouche A, Pohlmann L, Schlossarek S, Starbatty J, Yeh YH, Nattel S, et al. Decreased phosphorylation levels of cardiac myosin-binding protein-C in human and experimental heart failure. J Moll Cell Cardiol. 2007. 43:223–229.
Article
18. Miyamoto MI, del Monte F, Schmidt U, DiSalvo TS, Kang ZB, Matsui T, et al. Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc Natl Acad Sci USA. 2000. 97:793–798.
Article
19. Jaski BE, Jessup ML, Mancini DM, Cappola TP, Pauly DF, Greenberg B, et al. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID trial), a first-in-human pahse 1/2 clinical trial. J Cardiac Fail. 2009. 15:171–181.
Article
20. Hajjar RJ, Schmidt U, Matsui T, Guerrero JL, Lee KH, Gwathmey JK, et al. Modulation of ventricular function through gene transfer in vivo. Proc Natl Acad Sci USA. 1998. 95:5251–5256.
21. Haghighi K, Schmidt AG, Hoit BD, Brittsan AG, Yatani A, Lester JW, et al. Superinhibition of sarcoplasmic reticulum function by phospholamban induces cardiac contractile failure. J Biol Chem. 2001. 276:24145–24152.
Article
22. Luo W, Grupp IL, Harrer J, Ponniah S, Grupp G, Duffy JJ, et al. Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of beta-agonist stimulation. Circ Res. 1994. 75:401–409.
Article
23. Zhao XY, Hu SJ, Li J, Mou Y, Bian K, Sun J, et al. rAAV-asPLB transfer attenuates abnormal sarcoplasmic reticulum Ca2+-ATPase activity and cardiac dysfunction in rats with myocardial infarction. Eur J Heart Fail. 2008. 10:47–54.
Article
24. Tsuji T, Del Monte F, Yoshikawa Y, Abe T, Shimizu J, Nakajima-Takenaka C, et al. Rescue of Ca2+ overload-induced left ventricular dysfunction by targeted ablation of phospholamban. Am J Physiol Heart Circ Physiol. 2009. 296:H310–H317.
25. del Monte F, Harding SE, Dec GW, Gwathmey JK, Hajjar RJ. Targeting phospholamban by gene transfer in human heart failure. Circulation. 2002. 105:904–907.
Article
26. Haghighi K, Kolokathis F, Pater L, Lynch RA, Asahi M, Gramolini AO, et al. Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J Clin Invest. 2003. 111:869–876.
Article
27. Chen G, Zhou X, Nicolaou P, Rodriguez P, Song G, Mitton B, et al. A human polymorphism of protein phosphatase-1 inhibitor-1 is associated with attenuated contractile response of cardiomyocytes to β-adrenergic stimulation. FASEB J. 2008. 22:1790–1796.
Article
28. Yamada M, Ikeda Y, Yano M, Yoshimura K, Nishino S, Aoyama H, et al. Inhibition of protein phosphatase 1 by inhibitor-2 gene delivery ameliorates heart failure progression in genetic cardiomyopathy. FASEB J. 2006. 20:1197–1199.
Article
29. Grote-Wessels S, Baba HA, Bornik P, El-Armouche A, Fabritz L, Gillmann HJ, et al. Inhibition of protein phosphatase 1 by inhibitor-2 exacerbates progression of cardiac failure in a model with pressure overload. Cardiovasc Res. 2008. 79:464–471.
Article
30. Rodenbaugh DW, Wang W, Davis J, Edwards T, Potter JD, Metzger JM. Parvalbumin isoforms differentially accelerate cardiac myocyte relaxation kinetics in an animal model of diastolic dysfunction. Am J Physiol Heart Circ Physiol. 2007. 293:H1705–H1713.
Article
31. Huq F, Lebeche D, Lyer V, Liao R, Hajjar RJ. Gene transfer of parvalbumin improves diastolic dysfunction in senescent myocytes. Circulation. 2004. 109:2780–2785.
Article
32. Schmidt U, Zhu X, Lebeche D, Huq F, Guerrero JL, Hajjar RJ. In vivo gene transfer of parvalbumin improves diastolic function in aged rat hearts. Cardivasc Res. 2005. 66:318–323.
Article
33. Coutu P, Metzger JM. Optimal range for parvalbumin as relaxing agent in adult cardiac myocytes: gene transfer and mathematical modeling. Biophysic J. 2002. 82:2565–2579.
Article
34. Wright NT, Cannon BR, Zimmer DB, Weber DJ. S100A1: Structure, Function, and Therapeutic Potential. Curr Chem Biol. 2009. 3:138–145.
Article
35. Most P, Pleger ST, Völkers M, Heidt B, Boerries M, Weichenhan D, et al. Cardiac adenoviral S100A1 gene delivery rescues failing myocardium. J Clin Invest. 2004. 114:1550–1563.
Article
36. Remppis A, Most P, Löffler E, Ehlermann P, Bernotat J, Pleger S, et al. The small EF-hand Ca2+ binding protein S100A1 increases contractility and Ca2+ cycling in rat cardiac myocytes. Basic Res Cardiol. 2002. 97:156–162.
37. Most P, Remppis A, Pleger ST, Löffler E, Ehlermann P, Bernotat J, et al. Transgenic overexpression of the Ca2+-binding protein S100A1 in the heart leads to increased in vivo myocardial contractile performance. J Biol Chem. 2003. 278:33809–33817.
Article
38. Pleger ST, Most P, Boucher M, Solty S, Chuprun JK, Pleger W, et al. Stable myocardial-specific AAV6-S100A1 gene therapy results in chronic functional heart failure rescue. Circulation. 2007. 115:2506–2515.
Article
39. Remppis A, Pleger ST, Most P, Lindenkamp J, Ehlermann P, Löffler E, et al. S100A1 gene transfer: a strategy to strengthen engineered cardiac grafts. J Gen Med. 2004. 6:387–394.
Article
40. Cao H, Koehler DR, Hu J. Adenoviral vectors for gene replacement therapy. Viral Immunol. 2004. 17:327–333.
Article
41. Hoshijima M, Ikeda Y, Iwanaga Y, Minamisawa S, Date MO, Gu Y, et al. Chronic suppression of heart-failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery. Nat Med. 2002. 8:864–871.
Article
42. Owens RA. Second generation adeno-associated virus type2-based gene therapy systems with the potential for preferential integration into AAVS1. Curr Gene Ther. 2002. 2:145–159.
Article
43. Blömer U, Gruh I, Witschel H, Haverich A, Martin U. Shuttle of lentiviral vectors via transplanted cells in vivo. Gene Ther. 2005. 12:67–74.
Article
44. Wattanapitayakul SK, Bauer JA. Recent developments in gene therapy for cardiac disease. Biomed Pharmacother. 2000. 54:487–504.
Article
45. Labhasetwar V, Bonadio J, Goldstein S, Chen W, Levy RJ. A DNA controlled-release coating for gene transfer: transfection in skeletal and cardiac muscle. J Pharm Sci. 1998. 87:1347–1350.
Article
46. Roy I, Stachowiak MK, Bergey EJ. Nonviral gene transfection nanoparticles: function and applications in the brain. Nanomedicine. 2008. 4:89–97.
Article
47. Fisher LJ, Gage FH. Radical directions in Parkinson's disease. Nat Med. 1995. 1:201–203.
Article
Full Text Links
  • CMJ
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr