J Korean Acad Conserv Dent.  2005 Jul;30(4):335-343. 10.5395/JKACD.2005.30.4.335.

A study on the hemolytic properties of Prevotella nigrescens

Affiliations
  • 1Department of Conservative Dentistry, College of Dentistry, Wonkwang University, Korea. mksdd@wonkwang.ac.kr
  • 2Department of Oral Biochemistry, College of Dentistry, Wonkwang University, Korea.

Abstract

Hemolytic property is a specific feature of bacteria to obtain iron which is essential for its survival in host tissues. Therefore, it is thought to be one of several factors of virulence. The purpose of this study was to investigate the hemolytic properties of Prevotella nigrescens isolated from the teeth diagnosed as pulp necrosis and apical periodontitis under the presence of hemolysin inhibitors such as NaN3 and dithiothreitol, heat, various pH and cultural conditions. The results were as follows; 1. Clinically isolated P. nigrescens strains and standard P. nigrscens ATCC 33563 showed hemolytic activity. 2. P. nigrescens showed higher hemolytic activity against human erythrocytes than sheep or horse erythrocytes. 3. NaN3 and dithiothreitol (DTT) reduced the hemolytic activity of P. nigrescens in a dose dependent manner (p < 0.05). 4. Optimal pH for the maximum hemolytic activity of P. nigrescens was 4.0 and the hemolysin was stable under the 50degrees C, but the hemolytic activity was significantly decreased at 95degrees C. 5. P. nigrescens cultured in 10% CO2 condition showed higher hemolytic activity than the bacteria cultured in the anaerobic condition.

Keyword

P. nigrescens; Hemolytic property; Iron; Virulence; Erythrocyte; Hemolysin inhibitor

MeSH Terms

Bacteria
Dental Pulp Necrosis
Dithiothreitol
Erythrocytes
Horses
Hot Temperature
Humans
Hydrogen-Ion Concentration
Iron
Periapical Periodontitis
Prevotella nigrescens*
Prevotella*
Sheep
Sodium Azide
Tooth
Virulence
Dithiothreitol
Iron
Sodium Azide

Reference

1. Paster BJ, Boches SK, Galvin JL, Ericson RE, Lau CN, Levanos VA, Sahasrabudhe A, Dewhirst FE. Bacterial diversity in human subgingival plaque. J Bacteriol. 2001. 183:3770–3783.
Article
2. Slots J, Kamma JJ. General health risk of periodontal disease. Int Dent J. 2001. 51:417–427.
Article
3. Loesche WJ. Role of anaerobic bacteria in periodontal disease. Ann Otol Rhinol Laryngol Suppl. 1991. 154:43–45.
Article
4. Daly CG, Seymour GJ, Kieser JB. Bacterial endotoxin: a role in chronic inflammatory periodontal disease? J Oral Pathol. 1980. 9:1–15.
Article
5. Daly C, Fitzgerald GF, Davis R. Biotechnology of lactic acid bacteria with special reference to bacteriophage resistance. Antonie Van Leeuwenhoek. 1996. 70:99–110.
Article
6. Daly C, Mitchell D, Grossberg D, Highfield J, Stewart D. Bacteraemia caused by periodontal probing. Aust Dent J. 1997. 42:77–80.
Article
7. Shah HN, Gharbia SE. Biochemical and chemical studies on strains designated Prevotella intermedia and proposal of a new pigmented species, Prevotella nigrescens sp. nov. Int J Syst Bacteriol. 1992. 42:542–546.
Article
8. Takahashi N, Yamada T. Glucose metabolism by Prevotella intermedia and Prevotella nigrescens. Oral Microbiol Immunol. 2000. 15:188–195.
9. Amano A, Kuboniwa M, Kataoka K, Tazaki K, Inoshita E, Nagata H, Tamagawa H, Shizukuishi S. Binding of hemoglobin by Porphyromonas gingivalis. FEMS Microbiol Lett. 1995. 134:63–67.
10. Chattopadhyay K, Bhattacharyya D, Banerjee KK. Vibrio cholerae hemolysin. Eur J Biochem. 2002. 269:4351.
11. Eberhard TH, Sledjeski DD, Boyle MD. Mouse skin passage of a Streptococcus pyogenes Tn917 mutant of sagA/pel restores virulence, beta-hemolysis and sagA/pel expression without altering the position or sequence of the transposon. BMC Microbiol. 2001. 1:33.
12. Jurgens D, Ozel M, Takaisi-Kikuni NB. Production and characterization of Escherichia coli enterohemolysin and its effects on the structure of erythrocyte membranes. Cell Biol Int. 2002. 26:175–186.
13. Hertle R, Hilger M, Weingardt-Kocher S, Walev I. Cytotoxic action of Serratia marcescens hemolysin on human epithelial cells. Infect Immun. 1999. 67:817–825.
Article
14. Ali-Vehmas T, Vikerpuur M, Pyorala S, Atroshi F. Characterization of hemolytic activity of Staphylococcus aureus strains isolated from bovine mastitic milk. Microbiol Res. 2001. 155:339–344.
Article
15. Byrd W, Hooke AM. Immunization with temperature-sensitive mutants of Actinobacillus pleuropneumoniae induces protective hemolysin-neutralizing antibodies in mice. Curr Microbiol. 1997. 34:149–154.
Article
16. Chu L, Bramanti TE, Ebersole JL, Holt SC. Hemolytic activity in the periodontopathogen Porphyromonas gingivalis:kinetics of enzyme release and localization. Infect Immun. 1991. 59:1932–1940.
Article
17. Haque A, Sugimoto N, Horiguchi Y, Okabe T, Miyata T, Iwanaga S, Matsuda M. Production, purification, and characterization of botulinolysin, a thiol-activated hemolysin of Clostridium botulinum. Infect Immun. 1992. 60:71–78.
Article
18. Glomski IJ, Gedde MM, Tsang AW, Swanson JA, Portnoy DA. The Listeria monocytogenes hemolysin has an acidic pH optimum to compartmentalize activity and prevent damage to infected host cells. J Cell Biol. 2002. 156:1029–1038.
Article
19. Falkler WA Jr, Clayman EB, Shaefer DF. Haemolysis of human erythrocytes by the Fusobacterium nucleatum associated with periodontal disease. Arch Oral Biol. 1983. 28:735–739.
Article
20. Okamoto M, Maeda N, Kondo K, Leung KP. Hemolytic and hemagglutinating activities of Prevotella intermedia and Prevotella nigrescens. FEMS Microbiol Lett. 1999. 178:299–304.
Article
21. Sayers NM, James JA, Drucker DB, Blinkhorn AS. Possible potentiation of toxins from Prevotella intermedia, Prevotella nigrescens, and Porphyromonas gingivalis by cotinin. J Periodontol. 1999. 70:1269–1275.
Article
22. Gharbia SE, Haapasalo M, Shah HN, Kotiranta A, Lounatmaa K, Pearce MA, Devine DA. Characterization of Prevotella intermedia and Prevotella nigrescens isolates from periodontic and endodontic infections. J Periodontol. 1994. 65:56–61.
Article
23. Bae KS, Baumgartner JC, Shearer TR, David LL. Occurrence of Prevotella nigrescens and Prevotella intermedia in infections of endodontic origin. J Endod. 1997. 23:620–623.
Article
24. Scheffer J, Konig W, Braun V, Goebel W. Comparison of four hemolysin-producing organisms (Escherichia coli, Serratia marcescens, Aeromonas hydrophila, and Listeria monocytogenes) for release of inflammatory mediators from various cells. J Clin Microbiol. 1988. 26:544–551.
Article
25. Beem JE, Nesbitt WE, Leung KP. Identification of hemolytic activity in Prevotella intermedia. Oral Microbiol Immunol. 1998. 13:97–105.
Article
26. Gadeberg OV, Orskov I. In vitro cytotoxic effect of alpha-hemolytic Escherichia coli on human blood granulocytes. Infect Immun. 1984. 45:255–260.
Article
27. Konig B, Konig W. Effect of growth factors on Escherichia coli alpha-hemolysin-induced mediator release from human inflammatory cells: involvement of the signal transduction pathway. Infect Immun. 1994. 62:2085–2093.
Article
28. Krasilnikov OV, Merzlyak PG, Yuldasheva LN, Rodrigues CG, Bhakdi S, Valeva A. Electrophysiological evidence for heptameric stoichiometry of ion channels formed by Staphylococcus aureus alpha-toxin in planar lipid bilayers. Mol Microbiol. 2000. 37:1372–1378.
Article
29. Mengaud J, Chenevert J, Geoffroy C, Gaillard JL, Cossart P. Identification of the structural gene encoding the SH-activated hemolysin of Listeria monocytogenes: listeriolysin O is homologous to streptolysin O and pneumolysin. Infect Immun. 1987. 55:3225–3227.
Article
Full Text Links
  • JKACD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr