Endocrinol Metab.  2014 Jun;29(2):154-162. 10.3803/EnM.2014.29.2.154.

The Biochemical Prognostic Factors of Subclinical Hypothyroidism

Affiliations
  • 1Division of Endocrinology, Department of Internal Medicine, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea. ejlee423@yuhs.ac

Abstract

BACKGROUND
Patients with subclinical hypothyroidism (SHT) are common in clinical practice. However, the clinical significance of SHT, including prognosis, has not been established. Further clarifying SHT will be critical in devising a management plan and treatment guidelines for SHT patients. Thus, the aim of this study was to investigate the prognostic factors of SHT.
METHODS
We reviewed the medical records of Korean patients who visited the endocrinology outpatient clinic of Severance Hospital from January 2008 to September 2012. Newly-diagnosed patients with SHT were selected and reviewed retrospectively. We compared two groups: the SHT maintenance group and the spontaneous improvement group.
RESULTS
The SHT maintenance group and the spontaneous improvement group had initial thyroid-stimulating hormone (TSH) levels that were significantly different (P=0.035). In subanalysis for subjects with TSH levels between 5 to 10 microIU/mL, the spontaneous improvement group showed significantly lower antithyroid peroxidase antibody (anti-TPO-Ab) titer than the SHT maintenance group (P=0.039). Regarding lipid profiles, only triglyceride level, unlike total cholesterol and low density lipoprotein cholesterol, was related to TSH level, which is correlated with the severity of SHT. Diffuse thyroiditis on ultrasonography only contributed to the severity of SHT, not to the prognosis. High sensitivity C-reactive protein and urine iodine excretion, generally regarded as possible prognostic factors, did not show any significant relation with the prognosis and severity of SHT.
CONCLUSION
Only initial TSH level was a definite prognostic factor of SHT. TPO-Ab titer was also a helpful prognostic factor for SHT in cases with mildly elevated TSH. Other than TSH and TPO-Ab, we were unable to validate biochemical prognostic factors in this retrospective study for Korean SHT patients.

Keyword

Subclinical hypothyroidism; Thyrotropin; Thyroid peroxidase antibody; Lipids; C-reactive protein; Iodine

MeSH Terms

Ambulatory Care Facilities
C-Reactive Protein
Cholesterol
Cholesterol, LDL
Endocrinology
Humans
Hypothyroidism*
Iodine
Medical Records
Peroxidase
Prognosis
Retrospective Studies
Thyroid Gland
Thyroiditis
Thyrotropin
Triglycerides
Ultrasonography
C-Reactive Protein
Cholesterol
Cholesterol, LDL
Iodine
Peroxidase
Thyrotropin

Cited by  1 articles

Subclinical Hypothyroidism: Prevalence, Health Impact, and Treatment Landscape
Won Sang Yoo, Hyun Kyung Chung
Endocrinol Metab. 2021;36(3):500-513.    doi: 10.3803/EnM.2021.1066.


Reference

1. Fowler PB, Swale J, Andrews H, Ikram H, Banim SO. Grades of hypothyroidism. Br Med J. 1973; 2:178.
2. Hollowell JG, Staehling NW, Flanders WD, Hannon WH, Gunter EW, Spencer CA, Braverman LE. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab. 2002; 87:489–499.
3. Riniker M, Tieche M, Lupi GA, Grob P, Studer H, Burgi H. Prevalence of various degrees of hypothyroidism among patients of a general medical department. Clin Endocrinol (Oxf). 1981; 14:69–74.
4. Herrmann J. Prevalence of hypothyroidism in the elderly in Germany. A pilot study. J Endocrinol Invest. 1981; 4:327–330.
5. Bilous RW, Tunbridge WM. The epidemiology of hypothyroidism: an update. Baillieres Clin Endocrinol Metab. 1988; 2:531–540.
6. Kostoglou-Athanassiou I, Ntalles K. Hypothyroidism: new aspects of an old disease. Hippokratia. 2010; 14:82–87.
7. Vanderpump MP, Tunbridge WM, French JM, Appleton D, Bates D, Clark F, Grimley Evans J, Hasan DM, Rodgers H, Tunbridge F, Young ET. The incidence of thyroid disorders in the community: a twenty-year follow-up of the Whickham Survey. Clin Endocrinol (Oxf). 1995; 43:55–68.
8. Rosenthal MJ, Hunt WC, Garry PJ, Goodwin JS. Thyroid failure in the elderly. Microsomal antibodies as discriminant for therapy. JAMA. 1987; 258:209–213.
9. Huber G, Staub JJ, Meier C, Mitrache C, Guglielmetti M, Huber P, Braverman LE. Prospective study of the spontaneous course of subclinical hypothyroidism: prognostic value of thyrotropin, thyroid reserve, and thyroid antibodies. J Clin Endocrinol Metab. 2002; 87:3221–3226.
10. Diez JJ, Iglesias P. Spontaneous subclinical hypothyroidism in patients older than 55 years: an analysis of natural course and risk factors for the development of overt thyroid failure. J Clin Endocrinol Metab. 2004; 89:4890–4897.
11. Canaris GJ, Manowitz NR, Mayor G, Ridgway EC. The Colorado thyroid disease prevalence study. Arch Intern Med. 2000; 160:526–534.
12. Caraccio N, Ferrannini E, Monzani F. Lipoprotein profile in subclinical hypothyroidism: response to levothyroxine replacement, a randomized placebo-controlled study. J Clin Endocrinol Metab. 2002; 87:1533–1538.
13. Althaus BU, Staub JJ, Ryff-De Leche A, Oberhansli A, Stahelin HB. LDL/HDL-changes in subclinical hypothyroidism: possible risk factors for coronary heart disease. Clin Endocrinol (Oxf). 1988; 28:157–163.
14. Sharma R, Sharma TK, Kaushik GG, Sharma S, Vardey SK, Sinha M. Subclinical hypothyroidism and its association with cardiovascular risk factors. Clin Lab. 2011; 57:719–724.
15. Tuzcu A, Bahceci M, Gokalp D, Tuzun Y, Gunes K. Subclinical hypothyroidism may be associated with elevated high-sensitive c-reactive protein (low grade inflammation) and fasting hyperinsulinemia. Endocr J. 2005; 52:89–94.
16. Toruner F, Altinova AE, Karakoc A, Yetkin I, Ayvaz G, Cakir N, Arslan M. Risk factors for cardiovascular disease in patients with subclinical hypothyroidism. Adv Ther. 2008; 25:430–437.
17. Park YJ, Lee EJ, Lee YJ, Choi SH, Park JH, Lee SB, Lim S, Lee WW, Jang HC, Cho BY, Woo JI, Kim KW. Subclinical hypothyroidism (SCH) is not associated with metabolic derangement, cognitive impairment, depression or poor quality of life (QoL) in elderly subjects. Arch Gerontol Geriatr. 2010; 50:e68–e73.
18. Chung HK. Environmental factors and thyroid dysfunction. Endocrinol Metab. 2012; 27:191–193.
19. Karmisholt J, Laurberg P. Serum TSH and serum thyroid peroxidase antibody fluctuate in parallel and high urinary iodine excretion predicts subsequent thyroid failure in a 1-year study of patients with untreated subclinical hypothyroidism. Eur J Endocrinol. 2008; 158:209–215.
20. Konno N, Makita H, Yuri K, Iizuka N, Kawasaki K. Association between dietary iodine intake and prevalence of subclinical hypothyroidism in the coastal regions of Japan. J Clin Endocrinol Metab. 1994; 78:393–397.
21. Loy M, Cianchetti ME, Cardia F, Melis A, Boi F, Mariotti S. Correlation of computerized gray-scale sonographic findings with thyroid function and thyroid autoimmune activity in patients with Hashimoto's thyroiditis. J Clin Ultrasound. 2004; 32:136–140.
22. Rago T, Chiovato L, Grasso L, Pinchera A, Vitti P. Thyroid ultrasonography as a tool for detecting thyroid autoimmune diseases and predicting thyroid dsfunction in apparently healthy subjects. J Endocrinol Invest. 2001; 24:763–769.
23. Schiemann U, Avenhaus W, Konturek JW, Gellner R, Hengst K, Gross M. Relationship of clinical features and laboratory parameters to thyroid echogenicity measured by standardized grey scale ultrasonography in patients with Hashimoto's thyroiditis. Med Sci Monit. 2003; 9:MT13–MT17.
24. Vejbjerg P, Knudsen N, Perrild H, Laurberg P, Pedersen IB, Rasmussen LB, Ovesen L, Jorgensen T. The association between hypoechogenicity or irregular echo pattern at thyroid ultrasonography and thyroid function in the general population. Eur J Endocrinol. 2006; 155:547–552.
25. Rosario PW, Bessa B, Valadao MM, Purisch S. Natural history of mild subclinical hypothyroidism: prognostic value of ultrasound. Thyroid. 2009; 19:9–12.
26. Shin DY, Kim EK, Lee EJ. Role of ultrasonography in outcome prediction in subclinical hypothyroid patients treated with levothyroxine. Endocr J. 2010; 57:15–22.
Full Text Links
  • ENM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr