Int J Stem Cells.  2016 May;9(1):137-144. 10.15283/ijsc.2016.9.1.137.

Severe Type 2 Diabetes Induces Reversible Modifications of Endothelial Progenitor Cells Which are Ameliorate by Glycemic Control

Affiliations
  • 1U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Internal Medicine and Specialistics, Azienda Ospedaliera Universitaria (AOU), Second University of Naples, Naples, Italy. maria.depascale@policliniconapoli.
  • 2Division of Cardiology, ASL NA1, Pellegrini Hospital, Naples, Italy.
  • 3Department of Anesthesia and Critical Care Medicine, University of Florida, Shands Hospital, Florida, USA.
  • 4Department of Medicine and Surgery, Plastic Surgery Unit, University of Salerno, Salerno, Italy.
  • 5Department of Medical, Surgical, Neurological, Aging and Metabolic Sciences, Second University of Naples, Naples, Italy.
  • 6IRCCS Foundation SDN, Naples, Italy.
  • 7Geriatrics Medicine, Department of Translational Medical Science, Federico II University of Naples, Naples, Italy.

Abstract

BACKGROUND
Circulating endothelial progenitors cells (EPCs) play a critical role in neovascularization and endothelial repair. There is a growing evidence that hyperglycemia related to Diabetes Mellitus (DM) decreases EPC number and function so promoting vascular complications. AIM OF THE STUDY: This study investigated whether an intensive glycemic control regimen in Type 2 DM can increase the number of EPCs and restores their function.
METHODS
Sixty-two patients with Type 2 DM were studied. Patients were tested at baseline and after 3 months of an intensive regimen of glycemic control. The Type 2 DM group was compared to control group of subjects without diabetes. Patients with Type 2 DM (mean age 58.2±5.4 years, 25.6% women, disease duration of 15.4±6.3 years) had a baseline HgA1c of 8.7±0.5% and lower EPC levels (CD34+/KDR+) in comparison to healthy controls (p<0.01).
RESULTS
The intensive glycemic control regimen (HgA1c decreased to 6.2±0.3%) was coupled with a significant increase of EPC levels (mean of 18%, p<0.04 vs. baseline) and number of EPCs CFUs (p<0.05 vs. baseline).
CONCLUSION
This study confirms that number and bioactivity of EPCs are reduced in patients with Type 2 DM and, most importantly, that the intensive glycemic control in Type 2 DM promotes EPC improvement both in their number and in bioactivity.

Keyword

Type 2 diabetes; Endothelial progenitor cells; Vascular disease; Regenerative medicine

MeSH Terms

Diabetes Mellitus
Female
Humans
Hyperglycemia
Regenerative Medicine
Stem Cells*
Vascular Diseases

Figure

  • Fig. 1 Number of EPCs positive to FACS and EPCs positive to chemotaxic assay for VEGF-A in healthy group vs type 2 DM patients pre- and after glycemic control.


Reference

References

1. Sommese L, Vasco M, Costa D, Napoli C. Endothelial progenitor cells and human diseases. Ann Hematol. 2014; 93:533–534. DOI: 10.1007/s00277-013-1840-z.
Article
2. Napoli C, Hayashi T, Cacciatore F, Casamassimi A, Casini C, Al-Omran M, Ignarro LJ. Endothelial progenitor cells as therapeutic agents in the microcirculation: an update. Atherosclerosis. 2011; 215:9–22. DOI: 10.1016/j.atherosclerosis.2010.10.039.
Article
3. Wojakowski W, Kucia M, Kaźmierski M, Ratajczak MZ, Tendera M. Circulating progenitor cells in stable coronary heart disease and acute coronary syndromes: relevant reparatory mechanism? Heart. 2008; 94:27–33. DOI: 10.1136/hrt.2006.103358.
Article
4. Liguori A, Fiorito C, Balestrieri ML, Crimi E, Bruzzese G, Williams-Ignarro S, D’Amora M, Sommese L, Grimaldi V, Minucci PB, Giovane A, Farzati B, Ignarro LJ, Napoli C. Functional impairment of hematopoietic progenitor cells in patients with coronary heart disease. Eur J Haematol. 2008; 80:258–264. DOI: 10.1111/j.1600-0609.2007.01007.x.
Article
5. Valgimigli M, Rigolin GM, Fucili A, Porta MD, Soukhomovskaia O, Malagutti P, Bugli AM, Bragotti LZ, Francolini G, Mauro E, Castoldi G, Ferrari R. CD34+ and endothelial progenitor cells in patients with various degrees of congestive heart failure. Circulation. 2004; 110:1209–1212. DOI: 10.1161/01.CIR.0000136813.89036.21. PMID: 15249502.
Article
6. King TF, McDermott JH. Endothelial progenitor cells and cardiovascular disease. J Stem Cells. 2014; 9:93–106. PMID: 25158158.
7. Grimaldi V, Mancini FP, Casamassimi A, Al-Omran M, Zullo A, Infante T, Napoli C. Potential benefits of cell therapy in coronary heart disease. J Cardiol. 2013; 62:267–276. DOI: 10.1016/j.jjcc.2013.05.017. PMID: 23834957.
Article
8. Urbich C, Aicher A, Heeschen C, Dernbach E, Hofmann WK, Zeiher AM, Dimmeler S. Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J Mol Cell Cardiol. 2005; 39:733–742. DOI: 10.1016/j.yjmcc.2005.07.003. PMID: 16199052.
Article
9. Cheng Z, Jiang X, Pansuria M, Fang P, Mai J, Mallilankaraman K, Gandhirajan RK, Eguchi S, Scalia R, Madesh M, Yang X, Wang H. Hyperhomocysteinemia and hyper-glycemia induce and potentiate endothelial dysfunction via μ-calpain activation. Diabetes. 2015; 64:947–959. DOI: 10.2337/db14-0784. PMCID: 4338586.
Article
10. Tousoulis D, Papageorgiou N, Androulakis E, Siasos G, Latsios G, Tentolouris K, Stefanadis C. Diabetes mellitus-associated vascular impairment: novel circulating biomarkers and therapeutic approaches. J Am Coll Cardiol. 2013; 62:667–676. DOI: 10.1016/j.jacc.2013.03.089. PMID: 23948511.
11. de Nigris F, Rienzo M, Sessa M, Infante T, Cesario E, Ignarro LJ, Al-Omran M, Giordano A, Palinski W, Napoli C. Glycoxydation promotes vascular damage via MAPK-ERK/JNK pathways. J Cell Physiol. 2012; 227:3639–3647. DOI: 10.1002/jcp.24070. PMID: 22331607.
Article
12. Waltenberger J. Impaired collateral vessel development in diabetes: potential cellular mechanisms and therapeutic implications. Cardiovasc Res. 2001; 49:554–560. DOI: 10.1016/S0008-6363(00)00228-5. PMID: 11166268.
Article
13. Yiu KH, Tse HF. Specific role of impaired glucose metabolism and diabetes mellitus in endothelial progenitor cell characteristics and function. Arterioscler Thromb Vasc Biol. 2014; 34:1136–1143. DOI: 10.1161/ATVBAHA.114.302192. PMID: 24743430.
Article
14. Nowak WN, Borys S, Kusińska K, Bukowska-Strakova K, Witek P, Koblik T, Józkowicz A, Małecki MT, Dulak J. Number of circulating pro-angiogenic cells, growth factor and anti-oxidative gene profiles might be altered in type 2 diabetes with and without diabetic foot syndrome. J Diabetes Investig. 2014; 5:99–107. DOI: 10.1111/jdi.12131. PMID: 24843745. PMCID: 4025239.
Article
15. Westerweel PE, Teraa M, Rafii S, Jaspers JE, White IA, Hooper AT, Doevendans PA, Verhaar MC. Impaired endothelial progenitor cell mobilization and dysfunctional bone marrow stroma in diabetes mellitus. PLoS One. 2013; 8:e60357. DOI: 10.1371/journal.pone.0060357. PMID: 23555959. PMCID: 3610687.
Article
16. Desouza CV. Does drug therapy reverse endothelial progenitor cell dysfunction in diabetes? J Diabetes Complications. 2013; 27:519–525. DOI: 10.1016/j.jdiacomp.2013.04.007. PMID: 23809765.
Article
17. Jiraritthamrong C, Kheolamai P, U-Pratya Y, Chayosumrit M, Supokawej A, Manochantr S, Tantrawatpan C, Sritanaudomchai H, Issaragrisil S. In vitro vessel-forming capacity of endothelial progenitor cells in high glucose conditions. Ann Hematol. 2012; 91:311–320. DOI: 10.1007/s00277-011-1300-6.
Article
18. Yue WS, Lau KK, Siu CW, Wang M, Yan GH, Yiu KH, Tse HF. Impact of glycemic control on circulating endothelial progenitor cells and arterial stiffness in patients with type 2 diabetes mellitus. Cardiovasc Diabetol. 2011; 10:113. DOI: 10.1186/1475-2840-10-113. PMID: 22185563. PMCID: 3258289.
Article
19. António N, Fernandes R, Soares A, Soares F, Lopes A, Carvalheiro T, Paiva A, Pêgo GM, Providência LA, Gonçalves L, Ribeiro CF. Reduced levels of circulating endothelial progenitor cells in acute myocardial infarction patients with diabetes or pre-diabetes: accompanying the glycemic continuum. Cardiovasc Diabetol. 2014; 13:101. DOI: 10.1186/1475-2840-13-101. PMID: 24934236. PMCID: 4082424.
Article
20. Pikkemaat M, Melander O, Mölstad S, Garberg G, Boström KB. C-peptide concentration, mortality and vascular complications in people with Type 2 diabetes. The Skaraborg Diabetes Register. Diabet Med. 2015; 32:85–89. DOI: 10.1111/dme.12608.
Article
21. Kunz GA, Liang G, Cuculi F, Gregg D, Vata KC, Shaw LK, Goldschmidt-Clermont PJ, Dong C, Taylor DA, Peterson ED. Circulating endothelial progenitor cells predict coronary artery disease severity. Am Heart J. 2006; 152:190–195. DOI: 10.1016/j.ahj.2006.02.001. PMID: 16824855.
Article
22. Fadini GP. A reappraisal of the role of circulating (progenitor) cells in the pathobiology of diabetic complications. Diabetologia. 2014; 57:4–15. DOI: 10.1007/s00125-013-3087-6.
Article
23. Westerweel PE, Teraa M, Rafii S, Jaspers JE, White IA, Hooper AT, Doevendans PA, Verhaar MC. Impaired endothelial progenitor cell mobilization and dysfunctional bone marrow stroma in diabetes mellitus. PLoS One. 2013; 8:e60357. DOI: 10.1371/journal.pone.0060357. PMID: 23555959. PMCID: 3610687.
Article
24. Saito H, Yamamoto Y, Yamamoto H. Diabetes alters subsets of endothelial progenitor cells that reside in blood, bone marrow, and spleen. Am J Physiol Cell Physiol. 2012; 302:C892–901. DOI: 10.1152/ajpcell.00380.2011.
Article
25. Zhang J, Zhang X, Li H, Cui X, Guan X, Tang K, Jin C, Cheng M. Hyperglycaemia exerts deleterious effects on late endothelial progenitor cell secretion actions. Diab Vasc Dis Res. 2013; 10:49–56. DOI: 10.1177/1479164112444639.
Article
26. Cubbon RM, Kahn MB, Wheatcroft SB. Effects of insulin resistance on endothelial progenitor cells and vascular repair. Clin Sci (Lond). 2009; 117:173–190. DOI: 10.1042/CS20080263.
Article
27. Liguori A, Abete P, Hayden JM, Cacciatore F, Rengo F, Ambrosio G, Bonaduce D, Condorelli M, Reaven PD, Napoli C. Effect of glycaemic control and age on low-density lipoprotein susceptibility to oxidation in diabetes mellitus type 1. Eur Heart J. 2001; 22:2075–2084. DOI: 10.1053/euhj.2001.2655. PMID: 11686665.
Article
28. Casamassimi A, Balestrieri ML, Fiorito C, Schiano C, Maione C, Rossiello R, Grimaldi V, Del Giudice V, Balestrieri C, Farzati B, Sica V, Napoli C. Comparison between total endothelial progenitor cell isolation versus enriched Cd133+ culture. J Biochem. 2007; 141:503–511. DOI: 10.1093/jb/mvm060. PMID: 17308344.
Article
29. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997; 275:964–967. DOI: 10.1126/science.275.5302.964. PMID: 9020076.
Article
30. Urbich C, Aicher A, Heeschen C, Dernbach E, Hofmann WK, Zeiher AM, Dimmeler S. Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J Mol Cell Cardiol. 2005; 39:733–742. DOI: 10.1016/j.yjmcc.2005.07.003. PMID: 16199052.
Article
31. Losordo DW, Kibbe MR, Mendelsohn F, Marston W, Driver VR, Sharafuddin M, Teodorescu V, Wiechmann BN, Thompson C, Kraiss L, Carman T, Dohad S, Huang P, Junge CE, Story K, Weistroffer T, Thorne TM, Millay M, Runyon JP, Schainfeld R. Autologous CD34+ Cell Therapy for Critical Limb Ischemia Investigators. A randomized, controlled pilot study of autologous CD34+ cell therapy for critical limb ischemia. Circ Cardiovasc Interv. 2012; 5:821–830. DOI: 10.1161/CIRCINTERVENTIONS.112.968321. PMID: 23192920. PMCID: 3549397.
Article
32. Churdchomjan W, Kheolamai P, Manochantr S, Tapanadechopone P, Tantrawatpan C, U-Pratya Y, Issaragrisil S. Comparison of endothelial progenitor cell function in type 2 diabetes with good and poor glycemic control. BMC Endocr Disord. 2010; 10:5. DOI: 10.1186/1472-6823-10-5. PMID: 20374643. PMCID: 2858721.
Article
33. Schmidt-Lucke C, Rössig L, Fichtlscherer S, Vasa M, Britten M, Kämper U, Dimmeler S, Zeiher AM. Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation. 2005; 111:2981–2987. DOI: 10.1161/CIRCULATIONAHA.104.504340. PMID: 15927972.
Article
34. Sambataro M, Seganfreddo E, Canal F, Furlan A, Del Pup L, Niero M, Paccagnella A, Gherlinzoni F, Dei Tos AP. Prognostic significance of circulating and endothelial progenitor cell markers in type 2 diabetic foot. Int J Vasc Med. 2014; 2014:589412. PMID: 24624298. PMCID: 3929532.
Article
35. Güven H, Shepherd RM, Bach RG, Capoccia BJ, Link DC. The number of endothelial progenitor cell colonies in the blood is increased in patients with angiographically significant coronary artery disease. J Am Coll Cardiol. 2006; 48:1579–1587. DOI: 10.1016/j.jacc.2006.04.101. PMID: 17045891.
Article
36. Massa M, Rosti V, Ferrario M, Campanelli R, Ramajoli I, Rosso R, De Ferrari GM, Ferlini M, Goffredo L, Bertoletti A, Klersy C, Pecci A, Moratti R, Tavazzi L. Increased circulating hematopoietic and endothelial progenitor cells in the early phase of acute myocardial infarction. Blood. 2005; 105:199–206. DOI: 10.1182/blood-2004-05-1831.
Article
37. Kotlinowski J, Dulak J, Józkowicz A. Type 2 diabetes mellitus impairs endothelial progenitor cells functions. Postepy Biochem. 2013; 59:257–266.
38. Pistrosch F, Herbrig K, Oelschlaegel U, Richter S, Passauer J, Fischer S, Gross P. PPARgamma-agonist rosiglitazone increases number and migratory activity of cultured endothelial progenitor cells. Atherosclerosis. 2005; 183:163–167. DOI: 10.1016/j.atherosclerosis.2005.03.039. PMID: 15907852.
Article
39. Raptis AE, Markakis KP, Mazioti MC, Ikonomidis I, Maratou EP, Vlahakos DV, Kotsifaki EE, Voumvourakis AN, Tsirogianni AG, Lambadiari VA, Lekakis JP, Raptis SA, Dimitriadis GD. Effect of aliskiren on circulating endothelial progenitor cells and vascular function in patients with type 2 diabetes and essential hypertension. Am J Hypertens. 2015; 28:22–29. DOI: 10.1093/ajh/hpu119.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr