Maxillofac Plast Reconstr Surg.  2016 Feb;38(2):9. 10.1186/s40902-016-0054-4.

FEA model analysis of the effects of the stress distribution of saddle-type implants on the alveolar bone and the structural/physical stability of implants

Affiliations
  • 1Department of Dentistry, Hallym University College of Medicine, Gangdong Sacred Heart Hospital, 150, Seongan-ro, 05355 Gangdong-gu, Seoul, Korea. djcdavid@hanmail.net

Abstract

BACKGROUND
As dental implants receive masticatory stress, the distribution of stress is very important to peri-implant bone homeostasis and implant survival. In this report, we created a saddle-type implant and analyzed its stability and ability to distribute stress to the surrounding bone.
METHODS
The implants were designed as a saddle-type implant (SI) that wrapped around the alveolar bone, and the sizes of the saddles were 2.5, 3.5, 4.5, and 5.5 mm. The X and Y displacement were compared to clarify the effects of the saddle structures. The control group consisted of dental implants without the saddle design (CI). Using finite element modeling (FEM), the stress distribution around the dental implants was analyzed.
RESULTS
With saddle-type implants, saddles longer than 4.5 mm were more effective for stress distribution than CI. Regarding lateral displacement, a SI of 2.5 mm was effective for stress distribution compared to lateral displacement. ASI that was 5.6 mm in length was more effective for stress distribution than a CI that was 10 mm in length.
CONCLUSIONS
The saddle-type implant could have a bone-gaining effect. Because it has stress-distributing effects, it might protect the newly formed bone under the implant.


MeSH Terms

Dental Implants
Homeostasis
Dental Implants
Full Text Links
  • MPRS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr