1. Van Buskirk EM, Cioffi GA. Glaucomatous optic neuropathy. Am J Ophthalmol. 1992; 113:447–52.
Article
2. Quigley HA, Nickells RW, Kerrigan LA, et al. Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci. 1995; 36:774–86.
3. Fechtner RD, Weinreb RN. Mechanisms of optic nerve damage in primary open angle glaucoma. Surv Ophthalmol. 1994; 39:23–42.
Article
4. Grieshaber MC, Flammer J. Blood flow in glaucoma. Curr Opin Ophthalmol. 2005; 16:79–83.
Article
5. Hayreh SS. Blood supply of the optic nerve head and its role in op-tic atrophy, glaucoma, and oedema of the optic disc. Br J Ophthalmol. 1969; 53:721–48.
Article
6. Duijm HF, van den Berg TJ, Greve EL. Choroidal haemodynamics in glaucoma. Br J Ophthalmol. 1997; 81:735–42.
Article
7. Grunwald JE, Piltz J, Hariprasad SM, DuPont J. Optic nerve and choroidal circulation in glaucoma. Invest Ophthalmol Vis Sci. 1998; 39:2329–36.
8. Spaide RF, Koizumi H, Pozzoni MC. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol. 2008; 146:496–500.
Article
9. Branchini L, Regatieri CV, Flores-Moreno I, et al. Reproducibility of choroidal thickness measurements across three spectral domain optical coherence tomography systems. Ophthalmology. 2012; 119:119–23.
Article
10. Flammer J, Orgül S, Costa VP, et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002; 21:359–93.
Article
11. Bayhan HA, Aslan Bayhan S, Can I. Evaluation of the macular choroidal thickness using spectral optical coherence tomography in pseudoexfoliation glaucoma. J Glaucoma. 2014 Aug 18; [Epub ahead of print].
Article
12. Fujiwara T, Imamura Y, Margolis R, et al. Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J Ophthalmol. 2009; 148:445–50.
Article
13. Margolis R, Spaide RF. A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am J Ophthalmol. 2009; 147:811–5.
Article
14. Ishikawa H, Stein DM, Wollstein G, et al. Macular segmentation with optical coherence tomography. Invest Ophthalmol Vis Sci. 2005; 46:2012–7.
Article
15. Tan O, Li G, Lu AT, et al. Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. Ophthal-mology. 2008; 115:949–56.
Article
16. Collaborative Normal-Tension Glaucoma Study Group. The effec-tiveness of intraocular pressure reduction in the treatment of nor-mal-tension glaucoma. Am J Ophthalmol. 1998; 126:498–505.
17. Wolfs RC, Borger PH, Ramrattan RS, et al. Views on open-Angle glaucoma: definitions and prevalences-The Rotterdam Study. Invest Ophthalmol Vis Sci. 2000; 41:3309–21.
18. Ehrlich JR, Peterson J, Parlitsis G, et al. Peripapillary choroidal thickness in glaucoma measured with optical coherence tomo-graphy. Exp Eye Res. 2011; 92:189–94.
Article
19. Wilkins MR, Fitzke FW, Khaw PT. Pointwise linear progression criteria and the detection of visual field change in a glaucoma trial. Eye (Lond). 2006; 20:98–106.
Article
20. Hirotsu C, Ohta E, Hirose N, Shimizu K. Profile analysis of 24-hours measurements of blood pressure. Biometrics. 2003; 59:907–15.
Article
21. Choi J, Jeong J, Cho HS, Kook MS. Effect of nocturnal blood pres-sure reduction on circadian fluctuation of mean ocular perfusion pressure: a risk factor for normal tension glaucoma. Invest Ophthalmol Vis Sci. 2006; 47:831–6.
Article
22. Eguchi K, Hoshide S, Schwartz JE, et al. Visit-to-visit and ambula-tory blood pressure variability as predictors of incident car-diovascular events in patients with hypertension. Am J Hypertens. 2012; 25:962–8.
Article
23. Alm A, Bill A. Ocular and optic nerve blood flow at normal and in-creased intraocular pressures in monkeys (Macaca irus): a study with radioactively labelled microspheres including flow determi-nations in brain and some other tissues. Exp Eye Res. 1973; 15:15–29.
Article
24. Hayreh SS. The blood supply of the optic nerve head and the evalu-ation of it-myth and reality. Prog Retin Eye Res. 2001; 20:563–93.
25. Parver LM, Auker C, Carpenter DO. Choroidal blood flow as a heat dissipating mechanism in the macula. Am J Ophthalmol. 1980; 89:641–6.
Article
26. Hirooka K, Tenkumo K, Fujiwara A, et al. Evaluation of peripapil-lary choroidal thickness in patients with normal-tension glaucoma. BMC Ophthalmol. 2012; 12:29.
Article
27. Usui S, Ikuno Y, Miki A, et al. Evaluation of the choroidal thick-ness using high-penetration optical coherence tomography with long wavelength in highly myopic normal-tension glaucoma. Am J Ophthalmol. 2012; 153:10–6.e1.
Article
28. Park HY, Lee NY, Shin HY, Park CK. Analysis of macular and peri-papillary choroidal thickness in glaucoma patients by enhanced depth imaging optical coherence tomography. J Glaucoma. 2014; 23:225–31.
Article
29. Li L, Bian A, Zhou Q, Mao J. Peripapillary choroidal thickness in both eyes of glaucoma patients with unilateral visual field loss. Am J Ophthalmol. 2013; 156:1277–84.
Article
30. Curcio CA, Saunders PL, Younger PW, Malek G. Peripapillary chorioretinal atrophy: Bruch's membrane changes and photo-receptor loss. Ophthalmology. 2000; 107:334–43.
31. Margolis R, Spaide RF. A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am J Ophthalmol. 2009; 147:811–5.
Article
32. Grossniklaus HE, Green WR. Pathologic findings in pathologic myopia. Retina. 1992; 12:127–33.
Article
33. Millar-Craig MW, Bishop CN, Raftery EB. Circadian variation of blood-pressure. Lancet. 1978; 1:795–7.
Article
34. Harris A, Topouzis F, Wilson MR, et al. Association of the optic disc structure with the use of antihypertensive medications: the thessaloniki eye study. J Glaucoma. 2013; 22:526–31.
35. Jiang X, Varma R, Wu S, et al. Baseline risk factors that predict the development of open-angle glaucoma in a population: the Los Angeles Latino Eye Study. Ophthalmology. 2012; 119:2245–53.
36. Parati G, Pomidossi G, Ramirez A, et al. Variability of the haemo-dynamic responses to laboratory tests employed in assessment of neural cardiovascular regulation in man. Clin Sci (Lond). 1985; 69:533–40.
Article
37. Rothwell PM, Howard SC, Dolan E, et al. Prognostic significance of visit-to-visit variability, maximum systolic blood pressure, and episodic hypertension. Lancet. 2010; 375:895–905.
Article
38. Curcio CA, Allen KA. Topography of ganglion cells in human retina. J Comp Neurol. 1990; 300:5–25.
Article
39. Zeimer R, Asrani S, Zou S, et al. Quantitative detection of glau-comatous damage at the posterior pole by retinal thickness mapping. A pilot study. Ophthalmology. 1998; 105:224–31.
40. Leung CK, Chan WM, Yung WH, et al. Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. Ophthalmology. 2005; 112:391–400.
41. Kim JW, Rhew JY, Choi KR. Choroidal thickness in primary open-angle glaucoma using spectral-domain optical coherence tomography. J Korean Ophthalmol Soc. 2014; 55:868–76.
Article