1). Adams P, Muir H. Qualitive changes with age of proteoglycans of human lumbar disc. Ann Rheum Dis. 35:289–296. 1976.
2). Bernick S, Walker JM, Paule WJ. A ge changes to the anulus fibrosis in human intervertebral disc, Spine. 16:520–524. 1991.
3). Bishop PB, Pearce RH. The proteoglycans of the carti -laginous endplate of the human intervertebral disc change after maturity. J Orthop Res. 11:324–331. 1993.
4). Brock M, Patt A, Mayer HM. The form and structure of the extruded disc. Spine. 17:1547–1461. 1992.
Article
5). Buckwalter JA. Aging and degeneration of the human intervertebral disc. Spine. 20:1307–1314. 1995.
Article
6). Buckwalter JA. The fine structure of the human intervertebral disc. In: Symposium on idiopathic low back pain. ed by AA White, SL Gorden, St Louis, CV Mosby Co.:. 108–143. 1982.
7). Buckwalter JA, Pedrini-Mille A, Pedrini V, et al. .:. Proteoglycans of human infant intervertebral disc-Electron microscopic and Biochemical studies. J Bone Joint Surg. 67(A):284–294. 1985.
8). Buckwalter JA, Smith KC, Kazarien LE, et al. .:. Articular cartilage and intervertebral disc proteoglycans differ in structure: An electron microscopic study. J Orthop Res. 7:141–151. 1989.
Article
9). Conventry MB, Ghormley RK, Kernohan JW. The intervertebral disc: Its microscopic anatomy and pathology. I. Anatomy, development, and physiology. J Bone Joint Surg. 27:105–112. 1945.
10). Donohue PJ, Jahnke MR, Blaha MD, et al. Character -ization of link protein(s) from human intervertebral-disc tissue. Biochem J. 251:739–747. 1988.
11). Eyre DR. Biochemistry of the intervertebral disc. Int Rev Conn Tiss Res. 8:227–291. 1979.
Article
12). Eyre DR, Benya PD, Buckwalter JA, et al. Intervertebral disk-basic science perspectives, In: New Perspectives on Low Back Pain.ed by JW Frymoyer, SL Gorden, Park Ridge, IL: AAOS:147-195. 1989.
13). Eyre DR, Muir H. Quantitative analysis of typee I and II collagens in human intervertebral discs at various ages. Biochim Biophys Acta. 492:29–42. 1977.
14). Eyre DR, Muir H. Types I and II collagens in interverte bral disc: Interchanging radial distributions in annulus fibrosus. Biochem J. 157:267–270. 1976.
15). Frymoyer JW. The adult spine-Principles and Practice-,2nd ed. Philadelphia: Lippincott-Raven Publisher;p. 741–742. 1997.
16). Galante JO. Tensile properities of the human lumbar annulus fibrosus. Acta Orthop Scand. 100(suppl):1–91. 1967.
17). Gibson MJ, Buckley J, Mawhinney R, et al. .:. Magnetic resonance imaging and discography in diagnosis of disc degenerstion. J Bone Joint Surg. 68(B):369–373. 1986.
18). Hardingham TE. The role of link protein in the structure of cartilage proteoglycan aggregates. Biochim J. 177:237–247. 1979.
19). Ishii T, Tsuji H, Sano A, et al. .:. Histochemical and ultra -structural observations on brown degeneration of human intervertebral disc. J Orthop Res. 9:78–90. 1991.
20). Jeon CH, Kim HK, Kang SY. The study for the neovas -cularization and basic fibroblast growth factor (bFGF) Expression in the intervertebral disc tissue associated with aging and disc degeneration. J of Korean spine surg. 6:329–335. 1999.
21). Kang CN, Wang JM, Rho KJ, et al. .:. The relationships between the radiologic degenerative changes and histologic changes in herniated intervertebral disc. J of Korean Orthop Assoc. 27:1244–1255. 1992.
22). Kim YT, Kim JJ, Hwang JH, et al. .:. Annulus tears in the intervertebral disc degeneration-An experimental study using an animal model-, J of Korean spine surg. 1:259–272. 1994.
23). Kr mer J. Intervertebral disk diseases. Causes, diagnosis, treatment and prophylaxis. 2nd ed.New York: Thieme medical publishers Inc;p. 41–51. 1990.
24). Luoma K, Vehmas T, Riihimaki H, et al. Disc height and signal intensity of the nucleus pulposus on magnetic resonance imaging as indicators of lumbar disc degeneration. Spine. 26:680–686. 2001.
Article
25). Luoma K, Riihimaki H, Luukkonen R, et al. Low back pain in relation to lumbar disc degeneration. Spine. 25:487–492. 2000.
Article
26). Lyons G, Eisenstein SM, Sweet MB. Biochim Biophys Acta. 673:443–453. 1981.
27). Maroudas A. Physical chemistry of articular cartilage and the intervertebral disc. The Joint and Synovial fluid. Vol. II:ed by. L Sokoloff, editor. Orlando: Academic Press;p. 239–291. 1980.
Article
28). Mow VC, Zhu WB, Lai WM, et al. .:. The influence of link protein stabilization on the viscometric properties of proteoglycan aggregate solutions. Biochim Biophys Acta. 992:201–208. 1989.
Article
29). Naylor A. The biochemical changes in the human intervertebral disc in degeneration and nuclear prolapse. Clin N Am. 2:343–358. 1971.
Article
30). Olczyk K. Age-related changes in proteoglycans of human intervertebral discs. J Rheumatol. 53:19–25. 1994.
31). Osti OL, Fraser RD. MRI and discography of annular tears and intervertebral disc degeneration. J Bone Joint Surg. 74(B):431–435. 1992.
32). Pearce RH, Grimmer BJ. The chemical constitution of the proteoglycan of human intervertebral disc. Biochem J. 157:753–763. 1976.
Article
33). Pearce RH, Grimmer BJ, Adams ME. De generat ed and the chemical composition of the human lumbar intervertebral disc. J Orthop Res. 5:198–205. 1987.
34). Pearce RH, Mathieson JM, Mort JS, et al. .:. Effect of age on the abundance and fragmentation of link protein of the human intervertebral disc. J Orthop Res. 7:861–867. 1989.
Article
35). Pearce RH, Thompson JP, Bebault GM, et al. .:. Magnetic resonance imaging reflects the chemical changes of aging degeneration in the human intervertebral disk. J Rheumatol suppl. 27:42–43. 1991.
36). Pearson CH, Happey F, Nayloe A, et al. .:. Collagens and associated glycopreteins in the human intervertebral disc. Ann Rheum Dis. 31:45–53. 1972.
37). Pritzker KPH. Aging and degeneration in the lumbar intervertebral disc. Orthop Clin N Am. 8:65–77. 1977.
Article
38). Schiebler ML, Camerino VJ, Fallon MD, et al. .:. In vivo and ex vivo magnetic resonance imaging evaluation of early disc degeneration with histopathologic correlation. Spine. 16:635–640. 1991.
Article
39). Schneiderman G, Flannigan B, Kingston S, et al. .:. Magnetic resonance imaging in the diagnosis of disc degeneration: correlation with discography. Spine. 12:276–281. 1987.
40). Southern EP, Fye MA, Panjabi MM, et al. .:. Disc degeneration: a human cadaveric study correlating magnetic resonance imaging and quantitative discomanometry. Spine. 25:2171–2175. 2000.
41). Stevens RL, Dondi PG, Muir H. Proteoglycans of the intervertebral disc. Biochem J. 179:573–578. 1979.
42). Tengblad A, Pearce RH, Grimmer BJ. Demonstration of link protein in protein aggregates from human intervertebral disc. Biochem J. 222:85–92. 1984.
43). Urban JPG, Holm SH. I ntervertebral disc nutrition as related to spinbal movement and fusion, In: Tissue Nutrition and Viability. AR Hargens, editor. New York: Springer-Ver;ag;1985.
44). Urban JPG, Holm SH, Marouds A, et al. .:. Nutrition of the IVD - as in vivo study of solute transport. Clin Orthop Rel Res. 129:101–141. 1977.
45). Urban JPG, Maroudas A. The chemistry of the intervertebral disc in relation to its physiological function and requirements. Clin Rheum Dis. 6:51–76. 1980.
Article
46). Wang JM, Kim DJ. Diagnostic value of image findings of MRI and discography for the internal disc disruption. J of Korean Orthop Assoc. 32:497–505. 1997.
Article
47). Wang JM, Kim DJ. Diagnostic value of image findings of MRI for the intervertebral disc disruption, J of Korean Spine Surg. 4:36–42. 1997.
48). Weidenbaum M, Foster RJ, Best BA, et al. .:. Correlating magnetic imaging with the biochemical content of the normal human intervertebral disc. J of Orthop Res. 10:552–561. 1992.
49). Weidner N, Rice DT. Intervertebral disk material criteria for determining probable prolapse. Human Pathology. 19:406–410. 1988.
Article