Korean J Nephrol.  1999 Mar;18(2):219-229.

Influence of Intracerebroventricular Kallikrein and Lys-bradykinin on the Rabbit Renal Function

Affiliations
  • 1Department of Pharmacology, College of Medicine, Chonnam National University, Kwangju, Korea.
  • 2College of Dentistry, Chonnam National University, Kwangju, Korea.

Abstract

The renal function is under regulatory influence of central nervous system, in which various neurotransmitter and neuromodulator systems take part, and it has been known that kallikrein-kininogen- kinin system exists also in the brain, but its physiological role remains to be explored. This study was, therefore, undertaken to delineate the possible role of central kinin system in the regulation of renal function. Kallikrein given into a lateral ventricle(icv) of rabbit brain in doses ranging from 3 to 30 microgram/kg icv elicited increases in Na excretion and the fraction of filtered sodium excreted(FENa), as well as in urine flow rate. K excretion, however, did not parallel the Na excretion, but tended to decrease when the natriuresis reached its peak. Renal blood flow and glomerular filtration did not significantly change. Neither did free water reabsorption significantly change, but tended to decrease. The systemic blood pressure slightly increased. When 30 microgram/kg kallikrein was given intravenously, all the parameters of renal function and systemic blood pressure did not show any increase but decrease, primarily by decreased renal hemodynamics, resulting from transient hypotension. In experiments in which the plasma ANP was measured, the ANP level markedly increased, reaching more than 5 times the control value 25min after 30 microgram/kg icv, and lasting until the end of the experiment at 80min. The renal nerve activity increased with kallikrein, 30 microgram/kg icv, peaking at 1 min but it remained slightly increased until about 40 min, and then slightly declined. This indicates that the increased renal nerve activity may have antagonized or ameliorated the natriuretic effect of icv kallikrein. Lys-bradykinin(kallidin), a cleavage product from kallidinogen by kallikrein, when given icv in doses of 0.3 to 30 microgram/kg also produced increased Na excretion and diuresis. When CHA, a kallikrein inhibitor, was given icv in doses of 3-30 microgram/kg, elicited antidiuresis and antinatriuresis. However, pretreatment with CHA tended slightly to suppress the kallikrein effect. These results indicate that the central kallikrein- kinin system is involved in the central regulation of renal function, the activation of the system in the CNS resulting in increased natriuresis and diuresis, which are related to increased plasma ANP level, with the possible antagonistic effects of increased renal nerve activity.

Keyword

Renal Function; Intracerebroventricular; Kallikrein; Lys-bradykinin; Atrial Natriuretic Peptide(ANP)

MeSH Terms

Atrial Natriuretic Factor
Blood Pressure
Brain
Central Nervous System
Diuresis
Filtration
Hemodynamics
Hypotension
Kallidin*
Kallikreins*
Natriuresis
Natriuretic Agents
Neurotransmitter Agents
Plasma
Renal Circulation
Sodium
Water
Atrial Natriuretic Factor
Kallidin
Kallikreins
Natriuretic Agents
Neurotransmitter Agents
Sodium
Water
Full Text Links
  • KJN
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr