J Clin Neurol.  2013 Oct;9(4):280-282. 10.3988/jcn.2013.9.4.280.

A Case of GNE Myopathy Presenting a Rapid Deterioration during Pregnancy

Affiliations
  • 1Department of Neurology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea. ycchoi@yuhs.ac
  • 2Department of Neurology, Seoul National University College of Medicine, Seoul, Korea.
  • 3Department of Neurology, Chungnam National University College of Medicine, Daejeon, Korea.

Abstract

BACKGROUND
GNE myopathy is characterized by early-adult-onset distal myopathy sparing quadriceps caused by mutations in the GNE gene encoding UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase, an enzyme in the sialic-acid synthesis pathway.
CASE REPORT
A 27-year-old Korean woman presented a rapid deterioration in strength of the distal lower limbs during her first pregnancy. She was diagnosed with GNE myopathy and carrying the compound heterozygous mutations of the GNE gene (D208N/M29T).
CONCLUSIONS
This is a representative case implying that an increased requirement of sialic acid during pregnancy might trigger a clinical worsening of GNE myopathy.

Keyword

GNE myopathy; GNE gene; sialic acid; pregnancy; hyposialylation

MeSH Terms

Adult
Distal Myopathies
Female
Humans
Lifting
Lower Extremity
Muscular Diseases*
N-Acetylneuraminic Acid
Phosphotransferases
Pregnancy*
N-Acetylneuraminic Acid
Phosphotransferases

Figure

  • Fig. 1 Images from a computed tomography scan of the patient's leg muscles. We observed severe fatty infiltration (white arrow) of the gastrocnemius, soleus, and tibialis anterior muscles (B) compared to the quadriceps muscles (A), which were unaffected.

  • Fig. 2 Mutation analysis of GNE (black arrowheads): (A) c.86T>C in exon 2 (M29T) and (B) c.622G>A in exon 4 (D208N).


Reference

1. Nonaka I, Sunohara N, Ishiura S, Satoyoshi E. Familial distal myopathy with rimmed vacuole and lamellar (myeloid) body formation. J Neurol Sci. 1981; 51:141–155.
Article
2. Reinke SO, Eidenschink C, Jay CM, Hinderlich S. Biochemical characterization of human and murine isoforms of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE). Glycoconj J. 2009; 26:415–422.
Article
3. Sillanaukee P, Pönniö M, Jääskeläinen IP. Occurrence of sialic acids in healthy humans and different disorders. Eur J Clin Invest. 1999; 29:413–425.
Article
4. Noguchi S, Keira Y, Murayama K, Ogawa M, Fujita M, Kawahara G, et al. Reduction of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase activity and sialylation in distal myopathy with rimmed vacuoles. J Biol Chem. 2004; 279:11402–11407.
Article
5. Malicdan MC, Noguchi S, Hayashi YK, Nonaka I, Nishino I. Prophylactic treatment with sialic acid metabolites precludes the development of the myopathic phenotype in the DMRV-hIBM mouse model. Nat Med. 2009; 15:690–695.
Article
6. Nishino I, Noguchi S, Murayama K, Driss A, Sugie K, Oya Y, et al. Distal myopathy with rimmed vacuoles is allelic to hereditary inclusion body myopathy. Neurology. 2002; 59:1689–1693.
Article
7. Kim BJ, Ki CS, Kim JW, Sung DH, Choi YC, Kim SH. Mutation analysis of the GNE gene in Korean patients with distal myopathy with rimmed vacuoles. J Hum Genet. 2006; 51:137–140.
Article
8. Liewluck T, Pho-Iam T, Limwongse C, Thongnoppakhun W, Boonyapisit K, Raksadawan N, et al. Mutation analysis of the GNE gene in distal myopathy with rimmed vacuoles (DMRV) patients in Thailand. Muscle Nerve. 2006; 34:775–778.
Article
9. Grandis M, Gulli R, Cassandrini D, Gazzerro E, Benedetti L, Narciso E, et al. The spectrum of GNE mutations: allelic heterogeneity for a common phenotype. Neurol Sci. 2010; 31:377–380.
Article
10. Schwarzkopf M, Knobeloch KP, Rohde E, Hinderlich S, Wiechens N, Lucka L, et al. Sialylation is essential for early development in mice. Proc Natl Acad Sci U S A. 2002; 99:5267–5270.
Article
11. Saito F, Tomimitsu H, Arai K, Nakai S, Kanda T, Shimizu T, et al. A Japanese patient with distal myopathy with rimmed vacuoles: missense mutations in the epimerase domain of the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) gene accompanied by hyposialylation of skeletal muscle glycoproteins. Neuromuscul Disord. 2004; 14:158–161.
Article
Full Text Links
  • JCN
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr